LV56851UV Datasheet by ON Semiconductor

View All Related Products | Download PDF Datasheet
0N Semiconductor® GENEWC MARKING DIAGW 'I'Isihmiiun'sgumic. Hana-em» mmmmmmm Fmeeiuiax.‘G'wmm‘-'. mlyavmlynubepvaievl
© Semiconductor Components Industries, LLC, 2016 1 Publication Order Number:
April 2016- Rev. 0 LV56851UV/D
LV56851UV
Overview
The LV56851UV is a multiple output linear voltage regulator IC, which allows
reduction of quiescent current. The LV56851UV is specifically designed to
address automotive infotainment systems power supply requirements.
The LV56851UV integrates 5 linear regulator outputs, 1 high side power switch,
I2C-bus communication, ACC detection, battery voltage detection, over-current
limiter, overvoltage protection and thermal shut down.
Features
Low consumption current: 60A (typ, VDD output is in operation)
5 regulator outputs
VDD for microcontroller: 3.3 V,Iomax: 300 mA
For system: 3.3/5 V, Iomax: 300 mA
For audio: 5/8.5/9/12 V, Iomax: 400 mA
For illumination: 8/9/10.5/12 V, Iomax: 300 mA
For CD: 5/6/7/8 V, Iomax: 1500 mA
1 high side switch
AMP: Imax: 500 mA, voltage difference between input and output: 0.75 V
ACC detection circuit
Detection Voltage 2.7/3.2/3.6/4.2 V
Battery voltage detection (BDET) : VCC2
Low voltage detection(UVDET): 6.5/7.5(hys=0.5 V or 1.5 V)/8 V
Over voltage detection(OVDET): detection voltage 18 V
I2C-bus communication interface
Each output except VDD is independently enabled/disabled.
SYS/ILM/CD/AUDIO/ACC/UV voltage setting.
Read back supported: Output voltage setting, Output over-current,
Detections(ACC/UV/OVDET/OVP/TWARN)
RESET
Detection Voltage 2.8 V(typ, 0.85*VDD), N-MOS Open-Drain output
Supply input
VCC1: For internal reference voltage, control circuitry, VDD output.
VCC2: For AUDIO/ILM/CD/AMP/SYS
Over-current protection
Overvoltage protection(OVP): VCC1,VCC2 Typ 21 V
(All outputs except VDD are turned off)
Thermal shutdown: Typ 175°C , Thermal Warning: Typ 140°C
Package : HZIP15
AEC-Q100 (Grade 3) Qualified and PPAP capable
Typical Applications
Automotive infotainment
www.onsemi.com
ORDERING INFORMATION
Ordering Code:
LV56851UV-XH
Package
HZIP15
(Pb-Free / Halogen Free)
Shipping (Qty / packing)
720 / Tube
Linear Voltage Regulator, Multiple-Output,
System Power Supply IC,
for Automotive Infotainment System
HZIP15
* I2C Bus is a trademark of Philips Corporation.
r1 r‘l L_l 1 f l J I Lu 1 J, VREF ; —‘ 5.1 v VREG SYS VREF 3.3 V/5 V. 0.3 A VM m_; 4T 1;: _|_ TSD/ VCC2 F‘I I 1 + 1 L4 1 VREF7\ ]— l OVP ILM EN 4» ; ] GND r:| SCL SDA ACC LJ fi 3— 37 OVF—> SD!» V 4» OV —> OVP >AuOquuIOFF except VDD SD vAH Output OFF IZC—bus on. ACCIN VREF_ Aumo EN —> VREFi cu EN —» ,_T VDD aj—l—v :I I AUD‘O 5/85/9/12 V, 0.4 A l CD 5/6/7/8 V, 1.5 A 7; AMP -—$— ,,—| 1 7»? T ' VCCZ-0.75 V. 0.5 A AMP EN CTRL ACCDET www.cnsemi.com 2
LV56851UV
www.onsemi.com
2
BLOCK DIAGRAM
A
UDIO
VREF
A
CCIN
A
CCDET
VREF
VREG
VDD
3.3 V, 0.3 A
VREF 1.25 V
5.1 V
GND
TSD/
5/8.5/9/12 V, 0.4 A
VCC2
SYS
3.3 V/5 V, 0.3 A
CD
5/6/7/8 V, 1.5 A
A
MP
VCC2-0.75 V, 0.5 A
CTRL
11
OVP
OVP
OVP
VDD
SYS
_
EN
VREF
ILM_EN
VREF
CD_EN
VREF
AUDIO_EN
VREF
AMP_EN
OVDET
UVDET
BDET
9
3
5
4
1
13
15
14
8
7
2
6
A
CC
VDD
SCL
I
2
C-bus
CTL
SD
TSD
OVP
OVPAll Output OFF
except VDD
TSDAll Output OFF
UV
OV
10
12
BDET
VDD
VDD
RESET
VCC1
RSTB
FILT
VDD
-
+
-
+
-
+
-
+
-
+
TWARN
VDD
ILM
8/9/10.5/12 V, 0.3 A
LV56851UV
www.onsemi.com
3
PIN EQUIVALENT CIRCUITS
Pin # Pin name Function Equivalent circuit
1 AMP AMP output
VCC2-0.75 V
2 GND GND
3 ILM ILM output
8 V~12 V
4 AUDIO AUDIO output
5 V~12 V
5 CD CD output
5 V~8 V
Continued on next page
VCC2
GND
2
1
7
VCC2
GND
180k
1k
7
4
2
20.9~60k
VCC2
GND
180k
1k
7
5
2
33.3~60k
VCC2
GND
180k
1k
7
3
2
20.9~33.4k
LV56851UV
www.onsemi.com
4
Continued from preceding page
Pin # Pin name Function Equivalent circuit
6 ACCIN ACC detection input
7 VCC2 Supply terminal
8 VCC1 Supply terminal
9 SYS SYS output
3.3 V/5 V
10 SCL I2C-bus clock input
Continued on next page
VDD
GND
2
10
11
1k
8 VCC1
GND
6
2
90k
36~78k
VCC1
VCC2
GND
8
2
7
VCC2
GND
230/420k
1k
7
9
2
140k
LV56851UV
www.onsemi.com
5
Continued from preceding page
Pin # Pin name Function Equivalent circuit
11 VDD VDD output
3.3 V
12 SDA I2C-bus data input
13 RSTB
RESET
Open-drain output
14 BDET BDET output
15 ACCDET ACCDET output
VDD
GND
2
11
12
1k
100
VDD
GND
2
11
13
1k
100
GND
100
2
14
11 VDD
15
GND
11
VCC1
140k 230k
8
2
Allowdwle power deeipaiaMPdmaQIW] 0 -‘ N U h "I 0 N m 40 5.3(b) Al heat slnk(5o X 50 x1.5mm3) 1.3(3) Independent IC -20 0 Z) 40 so 80 100120140160 Ambient temperature. Taf'C]
LV56851UV
www.onsemi.com
6
MAXIMUM RATINGS / Ta = 25C (Note 1)
Parameter Symbol Conditions Ratings Unit
Supply voltage Vcc max VCC1,VCC2 36 V
Input voltage Vio max
SDA,SCL,ACCDET,BDET,RSTB,SYS,VDD
ILM,AUDIO,CD
ACCIN, AMP
7
14
36
V
Allowable power
dissipation
Pd max
Ta 25°C
-Independent IC
-Al heatsink (50 * 50 * 1.5 mm3) is used
-Size of heatsink: infinite
1.3
5.3
26
W
Peak supply voltage Vcc peak VCC1/VCC2/ACCIN
• See the test waveform below 50 V
Operating ambient
temperature Topr -40 to +85 °C
Storage temperature Tstg -55 to +150 °C
Junction temperature Tjmax +150 °C
1. Stresses exceeding those listed in the Absolute Maximum Rating table may damage the device. If any of these limits are exceeded,
device functionality should not be assumed, damage may occur and reliability may be affected.
• Waveform of surge test (VCC1,VCC2,ACCIN)
• Allowable power dissipation derating curve
50V
16V
10%
90%
100ms
5msec
(a) Independent IC
(b)Aluminum heat-sink (50×50×1.5 mm3)
Heat-sink tightening condition
tightening torque: 39 N•cm ,
with silicone grease
HZIP15
<\ \="" \\="" x/w="" ww="" w="" w="" w="" w="" w="" w="" w="" w="" w="" w="" w="" w="" w="" w="" n="" w="" m="" m//="" 7%="" m="" w7/="" vz/="">
LV56851UV
www.onsemi.com
7
RECOMMENDED OPERATING RANGES at Ta = 25C (Note 2)
VCC1
Parameter Symbol Conditions Ratings Unit
Operating supply voltage1 VCCop1 VDD output 7 to 16 V
VCC2
Parameter Symbol Conditions Ratings Unit
Operating supply voltage2 VCCop2 ILM(10.5 V) output
ILM(8 V) output
12.5 to 16
10 to 16 V
Operating supply voltage3 VCCop3 AUDIO(8.5 V) output 9.5 to 16 V
Operating supply voltage4 VCCop4 CD(8V) output(Io=1.5 A)
CD(8V) output(Io 1 A)
10.5 to 16
10 to 16 V
Operating supply voltage5 VCCop5 AMP output 7.5 to 16 V
Operating supply voltage6 VCCop6 SYS output 7.5 to 16 V
2. Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses
beyond the Recommended Operating Ranges limits may affect device reliability.
• “Maximum Rating” and “Recommended operating range”
(*) Each lower limit value is determined by “Output voltage”-“Dropout voltage”.
36 V
16 V
VCC1
ILM
VCC2
21 V
14V
12.5V 11V 10V
Vo=12 V
Vo=10.5 V
Vo=9 V
Vo=8 V
7V
A
UDIO
9.5V
7.5V
Vo=12 V
Vo=9 V
Vo=8.5 V
Vo=5 V
13V
10V
CD(Io1 A)
8V 7.5V
Vo=8 V
Vo=7 V
Vo=6 V
Vo=5 V
9V
10V
7.5V
A
MP
Out-o
f
-Rating
VDD
disabled(OVP)
recommended
operation
range
operating1
operating2(*)
drop out
re
g
ion
20.5 V
7.5V
SYS
Vo=3.3 V
Vo=5 V
LV56851UV
www.onsemi.com
8
ELECTRICAL CHARACTERISTICS at Ta 25C(Note 4), VCC1=VCC2=14.4 V unless otherwise noted. (Note 3)
Parameter Symbol Conditions Min Typ Max Unit
Quiescent current Icc VDD w/out load, ACCIN=0V
I2C register Gr0/Gr1/Gr2=00h 60 100 μA
VDD output (3.3 V)
Output voltage Vo1 Io1=200 mA 3.13 3.3 3.47 V
Output current Io1 Vo1 3.1 V 300 mA
Line regulation VoLN1 7.5 V<VCC1<16 V, Io1=200 mA 30 90 mV
Load regulation VoLD1 1 mA<Io1<200 mA 70 150 mV
Dropout voltage VDROP1 Io1=200 mA 0.5 1.0 V
Ripple rejection (Note 5) R
REJ1 f=120 Hz, VCC1=0.5 Vpp
Io1=200 mA 40 50 dB
RESET
Reset voltage Vrst0 VDD falling 2.7 2.8 2.94 V
Vrst As a ratio of Vo1, VDD falling 85 %
Hysteresis voltage Vrshs As a ratio of Vo1 1.6 %
Detection Delay1 Td1 H to L, VDD=Vrst+0.4 V to Vrst-0.4 V 25 μsec
Detection Delay2 Td2 L to H, VDD=Vrst-0.4 V to Vrst+0.4 V 100 μsec
SYS output (3.3 V/5 V) ; SYS_EN=1
Output voltage 1 Vo21 Io2=200 mA, SYS_V=0 3.13 3.3 3.47 V
Output voltage 2 Vo22 Io2=200 mA, SYS_V=1 4.75 5.0 5.25 V
Output current Io2 Vo213.1 V, Vo224.7 V 300 mA
Line regulation VoLN2 7.5 V<VCC2<16 V, Io2=200 mA 30 90 mV
Load regulation VoLD2 1 mA<Io2<200 mA 70 150 mV
Dropout voltage VDROP2 Io2=200 mA 0.4 0.8 V
Ripple rejection (Note 5) R
REJ2 f=120 Hz, VCC2=0.5 Vpp
Io2=200 mA 40 50 dB
ILM output (8-12 V); ILM_EN=1
Output voltage 1 Vo31 Io3=200 mA, ILM_V[1:0]=00 7.6 8.0 8.4 V
Output voltage 2 Vo32 Io3=200 mA, ILM_V[1:0]=01 8.55 9.0 9.45 V
Output voltage 3 Vo33 Io3=200 mA, ILM_V[1:0]=10 9.97 10.5 11.03 V
Output voltage 4 Vo34 Io3=200 mA, ILM_V[1:0]=11 11.4 12 12.6 V
Output current Io3 300 mA
Line regulation VoLN3 Vo+2 V<VCC2<16 V, Io3=200 mA 30 90 mV
Load regulation VoLD3 1 mA<Io3<200 mA 70 150 mV
Dropout voltage VDROP3 Io3=200 mA 0.6 1.05 V
Ripple rejection (Note 5) R
REJ3 f=120 Hz ,Io3=200 mA 40 50 dB
Continued on next page.
LV56851UV
www.onsemi.com
9
Continued from preceding page
Parameter Symbol Conditions Min Typ Max Unit
CD output (5-8 V); CD_EN=1
Output voltage 1 Vo41 Io4=1000 mA, CD_V[1:0]=00 4.75 5.0 5.25 V
Output voltage 2 Vo42 Io4=1000 mA, CD_V[1:0]=01 5.7 6.0 6.3 V
Output voltage 3 Vo43 Io4=1000 mA, CD_V[1:0]=10 6.65 7.0 7.35 V
Output voltage 4 Vo44 Io4=1000 mA, CD_V[1:0]=11 7.6 8.0 8.4 V
Output current Io4 Vo414.7 V, V447.6 V 1500 mA
Line regulation VoLN4 Vo+2 V<Vcc2<16 V,Io4=1000 mA 50 100 mV
Load regulation VoLD4 10 mA<Io4<1000 mA 100 200 mV
Dropout voltage 1 VDROP4 Io4=1000 mA 0.9 1.5 V
Dropout voltage 2 VDROP4’ Io4=500 mA 0.45 0.75 V
Ripple rejection
(Note 5) RREJ4 f=120 Hz ,Io4=1000 mA 40 50 dB
AUDIO output (5-12 V); AUDIO_EN=1
Output voltage 1 Vo51 Io5=200 mA, AUD_V[1:0]=00 4.75 5.0 5.25 V
Output voltage 2 Vo52 Io5=200 mA, AUD_V[1:0]=01 8.13 8.5 8.87 V
Output voltage 3 Vo53 Io5=200 mA, AUD_V[1:0]=10 8.55 9.0 9.45 V
Output voltage 4 Vo54 Io5=200 mA, AUD_V[1:0]=11 11.4 12 12.6 V
Output current Io5 400 mA
Line regulation VoLN5 Vo+1 V<VCC2<16 V,Io5=200 mA 30 90 mV
Load regulation VoLD5 1 mA<Io5<200 mA 70 150 mV
Dropout voltage VDROP5 Io5=200 mA 0.3 0.6 V
Ripple rejection
(Note 5) RREJ5 f=120 Hz, Io5=200 mA 40 50 dB
AMP HS-SW; AMP_EN=1
Output voltage Vo6 Io6=500 mA Vcc2-1.5 Vcc2-0.75 V
Output current Io6 Vo6VCC2-1.5 V 500 mA
ACC detection
Detection voltage 1 Vacc1 ACC_V[1:0]=00, ACCIN falling 2.62 2.7 2.78 V
Detection voltage 2 Vacc2 ACC_V[1:0]=01, ACCIN falling 3.1 3.2 3.3 V
Detection voltage 3 Vacc3 ACC_V[1:0]=10, ACCIN falling 3.49 3.6 3.71 V
Detection voltage 4 Vacc4 ACC_V[1:0]=11, ACCIN falling 4.07 4.2 4.33 V
Release voltage 1 Vaccr1 ACC_V[1:0]=00, ACCIN rising 2.81 2.9 2.99 V
Release voltage 2 Vaccr2 ACC_V[1:0]=01, ACCIN rising 3.3 3.4 3.5 V
Release voltage 3 Vaccr3 ACC_V[1:0]=10, ACCIN rising 3.68 3.8 3.92 V
Release voltage 4 Vaccr4 ACC_V[1:0]=11, ACCIN rising 4.26 4.4 4.54 V
Threshold hysteresis Vachs 0.2 V
Continued on next page.
LV56851UV
www.onsemi.com
10
Continued from preceding page
Parameter Symbol Conditions Min Typ Max Unit
Under-Voltage detection(UVDET)
detection voltage 1 Vuv1 VCC2 falling, UVD_V[1:0]=00 6.3 6.5 6.7 V
detection voltage 2 Vuv2 VCC2 falling, UVD_V[1:0]=01 7.27 7.5 7.73 V
detection voltage 3 Vuv3 VCC2 falling, UVD_V[1:0]=10 7.27 7.5 7.73 V
detection voltage 4 Vuv4 VCC2 falling, UVD_V[1:0]=11 7.76 8.0 8.24 V
release voltage 1 Vuvr1 VCC2 rising, UVD_V[1:0]=00 6.79 7.0 7.21 V
release voltage 2 Vuvr2 VCC2 rising, UVD_V[1:0]=01 7.76 8.0 8.24 V
release voltage 3 Vuvr3 VCC2 rising, UVD_V[1:0]=10 8.73 9.0 9.27 V
release voltage 4 Vuvr4 VCC2 rising, UVD_V[1:0]=11 8.24 8.5 8.76 V
detection hysteresis 1 Vuvhs1 UVD_V[1:0]=00 0.5 V
detection hysteresis 2 Vuvhs2 UVD_V[1:0]=01 0.5 V
detection hysteresis 3 Vuvhs3 UVD_V[1:0]=10 1.5 V
detection hysteresis 4 Vuvhs4 UVD_V[1:0]=11 0.5 V
Over-Voltage detection(OVDET)
detection voltage Vovd VCC2 rising 17 18 19 V
detection hysteresis Vodhys 0.5 V
Over-Voltage protection(OVP)
detection voltage Vovp VCC1/VCC2 rising, output disabled 21 V
detection hysteresis Vovhys 0.5 V
CMOS Output(ACCDET, BDET)
“H” voltage VflgH Isource=1 mA VDD-0.3 VDD V
“L” voltage VflgL Isink=1 mA 0.3 0.4 V
RSTB :
Input “L” voltage Vilrs Internal circuit reset 0 0.4 V
Input “H” voltage Vihrs Internal circuit reset released 2.8 VDD VDD+0.3 V
“L” voltage VrsbL Isink=1 mA 0.3 0.4 V
I2C-bus I/F; SCL,SDA
Input “L” voltage Vils 0 0.4 V
Input “H” voltage Vihs 2.8
VDD VDD+0.3 V
SDA “L” voltage Vols Isink=1 mA, ACK or data read 0.3 0.4 V
3. Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted.
Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. All the specification is defined based on the tests performed under the conditions where Tj and Ta(=25°C) are almost equal. These tests
were performed with pulse load to minimize the increase of junction temperature (Tj).
5. Guaranteed by design
LV56851UV
www.onsemi.com
11
TYPICAL CHARACTERISTICS
30
35
40
45
50
55
60
65
70
75
80
-50 0 50 100
Icc (uA)
temp(deg.)
Standby Current (Icc)
VCC=7V
VCC=14.4V
VCC=16V
0
100
200
300
400
500
600
700
800
0 5 10 15 20 25 30 35 40
Icc (uA)
VCC1,VCC2 (V)
Standby Current (Icc)
-45°C
25°C
85°C
110°C
82
82.5
83
83.5
84
84.5
85
85.5
86
86.5
87
-50 0 50 100
Vrst (%)
temp(deg.)
RESET Voltage
0
0.5
1
1.5
2
2.5
3
-50 0 50 100
Vrshs (%)
temp(deg.)
RESET detection hysteresis
2.7
2.75
2.8
2.85
2.9
2.95
-50 0 50 100
Vreset(V)
temp(deg.)
RESET Detection Voltage
19
21
23
25
27
29
31
33
35
-50 0 50 100
Td1 (us)
temp(deg.)
RESET Detection Delay (Td1)
70
80
90
100
110
120
130
140
-50 0 50 100
Td2 (us)
temp(deg.)
RESET Detection Delay (Td2)
LV56851UV
www.onsemi.com
12
3
3.1
3.2
3.3
3.4
3.5
3.6
-50 0 50 100
Vacc2, Vaccr2 (V)
temp(deg.)
ACC Under Voltage Detection2, detection voltage
Vacc2
Vaccr2
7.4
7.5
7.6
7.7
7.8
7.9
8
8.1
8.2
-50 0 50 100
Vuv2, Vuvr2 (V)
temp(deg.)
Under Voltage Detection2, detection voltage
Vuv2
Vuvr2
17
17.2
17.4
17.6
17.8
18
18.2
18.4
-50 0 50 100
Vovd (V)
temp(deg.)
Over Voltage Detection, detection voltage
Vovd
Vovd_r
19.5
20
20.5
21
21.5
22
-50 0 50 100
Vovp (V)
temp(deg.)
Over Voltage Protection, detection voltage
Vovp
Vovp_r
3.2
3.22
3.24
3.26
3.28
3.3
3.32
3.34
3.36
3.38
3.4
-50 0 50 100
Vo (V)
temp(deg.)
[VDD] Output voltage (Io=200mA)
VCC1=7V
VCC1=14.4V
VCC1=16V
0.2
0.3
0.4
0.5
0.6
0.7
0.8
-50 0 50 100
Vdrop (V)
temp(deg.)
[VDD] Dropout voltage (Io=200mA)
0
0.5
1
1.5
2
2.5
3
3.5
4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Vo (V)
Io (A)
[VDD] Output current vs Output voltage (VCC1=14.4V)
-45°C
25°C
85°C
110°C
0
10
20
30
40
50
60
70
80
90
100
10 100 1000 10000 100000
(dB)
Frequency (Hz)
[VDD] Ripple Rejection vs frequency (Io=200mA, T=25°C)
VCC=7V
VCC=14.4V
VCC=16V
| |
LV56851UV
www.onsemi.com
13
3.2
3.22
3.24
3.26
3.28
3.3
3.32
3.34
3.36
3.38
3.4
-50 0 50 100
Vo (V)
temp(deg.)
[SYS(3.3V)] Output voltage (Io=200mA)
VCC2=7.5V
VCC2=14.4V
VCC2=16V
0.1
0.2
0.3
0.4
0.5
0.6
0.7
-50 0 50 100
Vdrop (V)
temp(deg.)
[SYS(3.3V)] Dropout voltage (Io=200mA)
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
-50 0 50 100
Vdrop (V)
temp(deg.)
[ILM(8V)] Dropout voltage (Io=200mA)
7.8
7.85
7.9
7.95
8
8.05
8.1
8.15
8.2
-50 0 50 100
Vo (V)
temp(deg.)
[ILM(8V)] Output voltage (Io=200mA)
VCC2=10V
VCC2=14.4V
VCC2=16V
0
1
2
3
4
5
6
7
8
9
10
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Vo (V)
Io (A)
[ILM(8V)] Output current vs Output voltage (VCC2=14.4V)
-45°C
25°C
85°C
110°C
0
10
20
30
40
50
60
70
80
10 100 1000 10000 100000
(dB)
Frequency (Hz)
[ILM(8V)] Ripple Rejection vs frequency (Io=200mA, T=25°C)
VCC=10V
VCC=14.4V
VCC=16V
0
0.5
1
1.5
2
2.5
3
3.5
4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Vo (V)
Io (A)
[SYS(3.3V)] Output current vs Output voltage (VCC2=14.4V)
-45°C
25°C
85°C
110°C
0
10
20
30
40
50
60
70
80
90
100
10 100 1000 10000 100000
(dB)
Frequency (Hz)
[SYS(3.3V)] Ripple Rejection vs frequency (Io=200mA, T=25°C)
VCC=7.5V
VCC=14.4V
VCC=16V
| | ”47/ EH %
LV56851UV
www.onsemi.com
14
7.8
7.85
7.9
7.95
8
8.05
8.1
8.15
8.2
-50 0 50 100
Vo (V)
temp(deg.)
[CD(8V)] Output voltage (Io=1A)
VCC2=10V
VCC2=14.4V
VCC2=16V
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
-50 0 50 100
Vdrop (V)
temp(deg.)
[CD(8V)] Dropout voltage (Io=1A)
0
1
2
3
4
5
6
7
8
9
00.511.522.5
Vo (V)
Io (A)
[CD(8V)] Output current vs Output voltage (VCC2=14.4V)
-45°C
25°C
85°C
110°C
0
10
20
30
40
50
60
70
80
90
10 100 1000 10000 100000
(dB)
Frequency (Hz)
[CD(8V)] Ripple Rejection vs frequency (Io=1000mA, T=25°C)
VCC=10V
VCC=14.4V
VCC=16V
8.3
8.35
8.4
8.45
8.5
8.55
8.6
8.65
8.7
-50 0 50 100
Vo (V)
temp(deg.)
[AUDIO(8.5V)] Output voltage (Io=200mA)
VCC2=9.5V
VCC2=14.4V
VCC2=16V
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
-50 0 50 100
Vdrop (V)
temp(deg.)
AUDIO Dropout Voltage (Io=200mA)
0
1
2
3
4
5
6
7
8
9
10
0 0.2 0.4 0.6 0.8 1
Vo (V)
Io (A)
[AUDIO(8.5V)] Output current vs Output voltage (VCC2=14.4V)
-45°C
25°C
85°C
110°C
0
10
20
30
40
50
60
70
80
10 100 1000 10000 100000
(dB)
Frequency (Hz)
[AUDIO] Ripple Rejection vs frequency (Io=200mA, T=25°C)
VCC=7.5V
VCC=14.4V
VCC=16V
LV56851UV
www.onsemi.com
15
0
2
4
6
8
10
12
14
16
0 0.2 0.4 0.6 0.8 1 1.2
Vo (V)
Io (A)
[AMP] Output current vs Output voltage (VCC2=14.4V)
-45°C
25°C
85°C
110°C
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-50 0 50 100
Vo (V)
temp(deg.)
[AMP] Output drop voltage (Io=500mA)
VCC2=7.5V
VCC2=14.4V
VCC2=16V
ar »e EMU—k
LV56851UV
www.onsemi.com
16
I2C-bus Interface timing
Parameter Symbol
min typ max unit
SCL clock frequency fSCL 0 400 kHz
START condition hold time tHD;STA 0.6 us
SCL “L” pulse-width tLOW 1.3 us
SCL “H” pulse-width tHIGH 0.6 us
DATA hold time tHD;DAT 0 us
DATA setup time tSU;DAT 0.1 us
SDA/SCL rise time tr 0.3 us
SDA/SCL fall time tf 0.3 us
STOP condition setup time tSU;STO 0.6 us
Bus free time
between STOP and START condition
tBUF 1.3 us
Bus line load capacitance Cb 400 pF
tBUF
SCL
SDA
tLOW
tf
tr
ST
tHD;STA
tHD;DA tHIGH
tSU;DAT
tf
tr
SP ST
tSU;STO
Wme mode WI Read mode W mafiaaanmm
LV56851UV
www.onsemi.com
17
I2C-bus interface format (MSB first)
This part is I2C controlled power supply, using 2 wires
of SCL,SDA.
The communication protocol comprises
start-condition, device-address, sub-address, data and
stop-condition.
Every 8 bits are followed by ACK bit, and the receiver
device pulls down SDA line during ACK period.
This part doesn't accept sub-address auto increment
format. (Single data byte write per a communication.)
The protocol in Read-mode comprises start-condition,
device-address, data1, data2 and stop-condition.
(Note)The I2C-bus communication may be unstable
when VDD voltage is not stable or out of specification
range, since I2C-BUS circuitry is supplied by VDD.
• Device address
S6 S5 S4 S3 S2 S1 S0 R/W
0 0 0 1 0 0 0 1/0
• Register map
Write
D7 D6 D5 D4 D3 D2 D1 D0 init
PM ILM_EN CD_EN AUDIO_EN SYS_EN AMP_EN 0 0 0 00000000
VCTL ILM_V1 ILM_V0 CD_V1 CD_V0 AUD_V1 AUD_V0 SYS_V 0 00000000
DET ACC_V1 ACC_V0 UVD_V1 UVD_V0 BDETMD 0 (Reserved) 00000000
Read
D15 D14 D13 D12 D11 D10 D9 D8 init
VCTL ILM_V1 ILM_V0 CD_V1 CD_V0 AUD_V1 AUD_V0 SYS_V 0 00000000
D7 D6 D5 D4 D3 D2 D1 D0 init
FLG ACCUV UV OV OVP TWARN OC 0 0 00000000
Write mode
SCL
SDA
Start
Condition
Device Address + R/W + ACK Data(address A) + ACK
Read mode
SCL
SDA
Start
Condition
Device Address + R/W + ACK Read data2 + ACK Stop
Condition
Read data1 + ACK
AK
R D15
D14 D13 D12 D11 D10
D9 D8 AK D7 D6 D5 D4 D3 D2 D1 D0 AK
S3
S6 S5 S4 S3 S2 S1 S0
Stop
Condition
Sub Address(A) + ACK
AK
W A7 A6 A5 D7 D6 D5
A4 A3 A2 A1 A0 AK D4 D3 D2 D1 D0 AK
S6 S5 S4 S2 S1 S0
LV56851UV
www.onsemi.com
18
Write Register explanation
ADR bit Name init Description
00h 7 ILM_EN 0 ILM output enable 1: ON 0: OFF
6 CD_EN 0 CD output enable 1: ON 0: OFF
5 AUDIO_EN 0 AUDIO output enable 1: ON 0: OFF
4 SYS_EN 0 SYS output enable 1: ON 0: OFF
3 AMP_EN 0 AMP output enable 1: ON 0: OFF
2 0
1 0
0 0
ADR bit Name init Description
01h [7:6] ILM_V[1:0] 00 ILM output voltage(*) 11: 12 V 10: 10.5 V 01: 9 V 00: 8 V
[5:4] CD_V[1:0] 00 CD output voltage(*) 11: 8 V 10: 7 V 01: 6 V 00: 5 V
[3:2] AUD_V[1:0] 00 AUDIO output voltage(*) 11: 12 V 10: 9 V 01: 8.5 V 00: 5 V
1 SYS_V 0 SYS output voltage(*) 1: 5 V 0: 3.3 V
0 0
(*) “Output voltage setting” is only valid when corresponding output is set disabled(xxx_EN=0). It is ignored when the output is
set enabled(xxx_EN=1).
ADR bit Name init Description
02h [7:6] ACC_V[1:0] 00 ACC detection voltage 11: 4.2 V 10: 3.6 V 01: 3.2 V 00: 2.7 V
[5:4] UVD_V[1:0] 00 UVDET detection voltage
11: 8 V 10: 7.5 V(9 V) 01: 7.5 V(8 V) 00: 6.5 V
3 BDETMD 0 BDET output mode 1: BDET/TWARN 0: BDET only
2 0
[1:0] (Reserved) 00 (For TEST) Must be set to “00” for normal use.
Read Register explanation
ADR bit Name init Description
[15:14] ILM_V[1:0] 00 ILM output voltage 11: 12 V 10: 10.5 V 01: 9 V 00: 8 V
[13:12] CD_V[1:0] 00 CD output voltage 11: 8 V 10: 7 V 01: 6 V 00: 5 V
[11:10] AUD_V[1:0] 00 AUDIO output voltage 11: 12 V 10: 9 V 01: 8.5 V 00: 5 V
9 SYS_V 0 SYS output voltage 1: 5 V 0: 3.3 V
8 0
7 ACCUV 0 ACC detection 1: Under voltage 0: Nornmal
6 UV 0 Under voltage detection 1: Under voltage 0: Normal
5 OV 0 Over voltage detection 1: Over Voltage 0: Normal
4 OVP 0 Over voltage protection 1: Over Voltage Protection 0: Normal
3 TWARN 0 Thermal Warning 1: High temperature 0: Normal
2 OC 0 Output Over Current 1: Over current 0: Normal
1 0
0 0
LV56851UV
www.onsemi.com
19
FUNCTIONAL DESCRIPTION
[Standby mode]
When VCC1 is applied, internal control circuitry is
automatically reset and goes into Stand-by mode.
In Stand-by mode, following functions are active.
VDD(3.3 V) output
I2C-bus communication
Over voltage
protection(OVP)/UVDET/OVDET/ACC
detection/BDET output
Thermal shutdown(TSD)
[VCC1/VCC2]
VCC1 input is necessary for any operation of this
device since VCC1 supplies VDD and common
circuitry such as reference voltage, internal control
circuitry.
VCC2 is the supply for AUDIO/ILM/CD/AMP/SYS
outputs.
LV56851UV can tolerate up to 50 V peak surge
voltage on VCC1/2 or ACCIN, but for more safety
design, adding power clamp such as power zener
diode on battery connected line is recommended in
order to absorb applied surge.
LV56851UV has no protection against battery reverse
connection. If a negative voltage input is possible,
adding Schottky diode between VCC and GND is
recommended to protect the device from the negative
voltage.
[Controls]
The functions of LV56851UV can be controlled via
I2C-bus. See “I2C bus interface format” term for
details.
[Linear Regulators]
VDD output
When VCC1 is applied, VDD output is active
regardless of control states.
SYS/CD/AUDIO/ILM output
These outputs are individually enabled or disabled via
I2C-bus.
The voltage of each output can be selected via I2C-bus.
These commands must be set prior to enabling
corresponding output. If you intend to change the
voltage setting for these outputs, be sure to do it after
the output is set disabled. In order to avoid unintended
output voltage change, each “output voltage setting” is
valid only when corresponding output is set
disabled(xxx_EN=0). The “output voltage setting” is
ignored when the output is set enabled(xxx_EN=1).
Output voltage setting can be referred by reading via
I2C-bus(VCTL register). It is strongly recommended
to read and check VCTL register value just before
setting enable the output in order to avoid unintended
output voltage change even in case if communication
error were to happen and incorrect voltage setting
were written to the device.
Each regulator output limits output current if the
output gets over-loaded condition. The limit current
decreases as the output voltage gets lower, in order to
reduce the stress applied to the device.
All regulators in LV56851UV are low dropout outputs,
because the output stage of all regulators is P-channel
LDMOS.
When you select output capacitors for linear
regulators, you should consider three main
characteristics: startup delay, transient response and
loop stability. The capacitor values and type should be
based on cost, availability, size and temperature
constraints. Tantalum, Aluminum electrolytic, Film,
or Ceramic capacitors are all acceptable solutions.
However, attention must be paid to ESR constraints.
The aluminum electrolytic capacitor is the least
expensive solution, but if the circuit operates at low
temperatures (-25 to -40°C ), both the value and ESR
of the capacitor will vary considerably. The capacitor
manufacturer's datasheet usually provides this
information.
[High-side switch]
AMP is a high-side power switch connected to VCC2.
The output is enabled or disabled via I2C-bus.
The high-side switch limits output current if the output
gets over-loaded condition. The limit current becomes
lower value, if the output voltage gets lower than 2.5
VDD VDD RSTB \ Unslab‘e Regxon RSTBTmfin C
LV56851UV
www.onsemi.com
20
V(typ) in order to reduce the stress applied to the
device.
If the output is connected to inductive load or loads
which have different ground potential, protection
diodes (D1,D2) are necessary to protect the device
from negative voltage.
[Current Limiting]
When the each output becomes in over loaded
condition, the device limits the output current.
All outputs are also protected against short circuit to
GND by fold back current limiter.
If one of each output except VDD is in over-current
condition, OC bit of FLG register is set 1, which can
be read via I2C-bus.
[Detections]
RESET circuit
When the VDD voltage drops below the reset
threshold (typ:2.8 V, 85% of Vo1:3.3 V) for more than
Detection delay period(Td1), RSTB is pulled low.
During RSTB=Low, internal control circuitry is reset
and all the registers of I2C-bus are initialized.
When the VDD voltage rises higher than the threshold
(typ:2.86 V, 86.6% of Vo1:3.3 V), RSTB becomes
open state and reaches high level by external resistor
Rrst, internal reset is released after the delay
period(Td2).
Add an optional capacitor between RSTB to GND in
order to obtain longer reset time (>Td2). The
approximate delay time can be calculated by the
expression below.
VDD
Td1
RSTB Td2 Td2
Td1
Unstable Region Unstable Region
VDD
GND
GND
(<Td1)
Vrst
Vrst+Vrsth
R
S
TB Timing
C
hart
(<Td2)
RESET delay time (typ)
= 0.68*Rrst*Crst + Td2 (sec)
RESET circuit block diagram
Filter
VDD
I2C
CTRL
VDD
Vrst
Reset
RSTB
To
MCU
(Optional)
Rrst
Crst
Vrst : RESET voltage(typ:2.8 V)
LV56851UV
www.onsemi.com
21
Under voltage detection (UVDET)
If the VCC2 voltage gets lower than set value
(UVD_V[1:0]), Under-Voltage is detected and the UV
bit of FLG register is set 1, which can be read via
I2C-bus. BDET pin keeps “Low” during UVDET
condition. Each output status keeps the same
condition even if UV is detected.
Over voltage detection (OVDET)
If the VCC2 voltage exceeds 18V(typ), Over-Voltage
is detected and the OV bit of FLG register is set 1,
which can be read via I2C-bus. BDET pin keeps
“Low” during OVDET condition. Each output status
keeps the same condition even if OV is detected.
ACC Under voltage detection
If the ACCIN voltage gets lower than set value
(ACC_V[1:0]), the ACCUV bit of FLG register is set
1, which can be read via I2C-bus. ACCDET pin keeps
“Low” during ACCUV is detected.
Each output status keeps the same condition even if
ACCUV is detected.
Over voltage protection (OVP)
If the voltage of VCC1 or VCC2 exceeds 21 V(typ),
OVP is detected and the OVP bit of FLG register is set
1, which can be read via I2C-bus. And all the outputs
except VDD are automatically turned off. When the
voltage of VCC1 and VCC2 get lower than 20.5
V(typ), OVP detection is released. But output voltages
are not automatically restored, because once OVP is
detected, PM register of I2C-bus is reset.
BDET pin keeps “Low” during OVP condition.
Thermal Shutdown
To protect the device from overheating, a thermal
shutdown circuitry is included. If the junction
temperature exceeds approximately 175°C(typ), all
outputs are turned off regardless of control state. After
the junction temperature drops below 145°C(typ),
VDD output is automatically restored and I2C-bus
control becomes available.
The thermal shutdown circuit does not guarantee the
protection of the final product because it operates out
of maximum rating (exceeding Tjmax=150°C).
Thermal Warning
To inform over-temperature of the die, when the
junction temperature exceeds approximately
140°C(typ), the TWARN bit of FLG register is set 1,
which can be read via I2C-bus. After the junction
temperature drops below 130°C(typ), TWARN is
released and TWARN bit is reset.
Each output status keeps the same condition even if
TWARN is detected.
If you set BDETMD bit=1 of DET register, BDET pin
becomes “Low” when TWARN is detected.
BDET output
BDET output depends on BDETMD bit setting of
DET register as shown on the table below.
When each of the listed condition is satisfied, BDET is
pulled “Low”.
Conditions for BDET=Low BDETMD
Conditions 0 (default) 1
UV VCC2 < UVDET Threshold
OV VCC2 > OVDET Threshold
TWARN Tj > 140oC(typ) ignored
I‘C Inpms (SCL/SDA) ILM oulpul CD ompm AUDIO ompu: SYS ompm AMP ompu: 29V ACCIN ACCDET BDET OVDET Note: The above values are obtained when typ. AH the voltage setting are defaun va www.cnsemi.com 22
LV56851UV
www.onsemi.com
22
Timing Chart
Note: The above values are obtained when typ. All the voltage setting are default values
18 V
VCC1
SYS output
2.7 V
2.9 V
ILM_EN=1
CD_EN=1
AUDIO_EN=1
SYS_EN=1
AMP_EN=1
ILM_EN=0
CD_EN=0
AUDIO_EN=0
SYS_EN=0
AMP_EN=0
VDD
7 V
6.5 V
3.8 V
I
2
C inputs
(SCL/SDA)
ACCIN
ACCDET
VCC2
VDD output
ILM output
CD output
AUDIO output
Initial
Settings
21 V 20.5 V
17.5 V
Output enable
Settings
OVP detect
OVP release
Output enable
Settings
VDD lost
VDD
BDET
OVDET UVDET
VDD
RSTB
2.86 V 2.8 V
AMP output
2.8 V
Initial
Settings
ILM on m 1 l ' ii Peripheral parts HT? ljgil JiILM { Part name Description Recommended value Note C1 Capacitor for AMP output stabilization greater than 22 pF CZiCSiCAiCQiclo output stabilization capacitor greater than10 pF(') 0608 Power supply bypass capacitor CG greater than 100 pF Make sure to ca. greater than 47 pF implement close to 0507 Capacitor for oscillation protector greater than 0.22 pF VCC and GND. Di DZ Internal device protection diode ON Semiconductor $31 OOSMS D3 Reverse current protection diode ON Semiconductor SB1003M3 R1 iR2 ACC divider resistors R1>R2 R3 Pull»up resistor 100 k0 (‘) Make sure that output capacitors are greater than 10 pF and meets the condition of ESR:0.001 to 10 U , in whic voltage/temperature dependence and their tolerances are taken into consideration. Moreover, in case of electrolytic capacitor, high-frequency characteristics should be sufficiently good. www.0nsemi.com 23
LV56851UV
www.onsemi.com
23
APPLICATION CIRCUIT EXAMPLE
Peripheral parts
Part name Description Recommended value Note
C1 Capacitor for AMP output stabilization greater than 2.2 μF
C2,C3,C4,C9,C10 output stabilization capacitor greater than10 μF(*)
C6,C8 Power supply bypass capacitor C6: greater than 100 μF
C8: greater than 47 μF
Make sure to
implement close to
VCC and GND.
C5,C7 Capacitor for oscillation protector greater than 0.22 μF
D1,D2 Internal device protection diode ON Semiconductor
SB1003M3
D3 Reverse current protection diode ON Semiconductor
SB1003M3
R1,R2 ACC divider resistors R1>R2
R3 Pull-up resistor 100 k
(*) Make sure that output capacitors are greater than 10 μF and meets the condition of ESR=0.001 to 10 , in which
voltage/temperature dependence and their tolerances are taken into consideration. Moreover, in case of electrolytic
capacitor, high-frequency characteristics should be sufficiently good.
ILM
ACCIN
CD
SDA
SCL
VCC2
VCC1
GND
VDD
RSTB
SYS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
LV56851UV
AUDIO
BDET
AMP
AMP
D2
D1
SDA
SCL
VDD
ILM CD
AUDIO
+B
SYS
C10
BDET
ACC
C9
C1
C6 C5
C2
C3
C4
D3
RSTB
ACCDET
ACCDET
R1
R2
R3
C8 C7
LV56851UV
www.onsemi.com
24
HZIP15 Heat sink attachment
Heat sinks are used to lower the semiconductor device
junction temperature by leading the head generated by
the device to the outer environment and dissipating the
heat.
a. Unless otherwise specified, for power ICs with tabs
and power ICs with attached heat sinks, solder must
not be applied to the heat sink or tabs.
b. Heat sink attachment
• Use flat-head screws to attach heat sinks.
• Use also washer to protect the package.
• Use tightening torques in the ranges 39-59 Ncm(4-6
kgcm) .
• If tapping screws are used, do not use screws with a
diameter larger than the holes in the semiconductor
device itself.
Do not make gap, dust, or other contaminants to get
between the semiconductor device and the tab or
heat sink.
Take care to the position of via hole.
• Do not allow dirt, dust, or other contaminants to get
between the semiconductor device and the tab or
heat sink.
• Verify that there are no press burrs or screw-hole
burrs on the heat sink.
• Warping in heat sinks and printed circuit boards
must be no more than 0.05 mm between screw holes,
for either concave or convex warping.
• Twisting must be limited to under 0.05 mm.
Heat sink and semiconductor device should be
mounted in parallel.
Take care of electric or compressed air screw driver
• The speed of these torque wrenches must not exceed
700 rpm, and should typically be about 400 rpm.
c. Silicone grease
• Spread the silicone grease evenly when mounting
heat sinks.
• Sanyo recommends YG-6260 (Momentive
Performance Materials Japan LLC)
d. Mount
• First mount the heat sink on the semiconductor
device, and then mount that assembly on the printed
circuit board.
• In case of attaching a heat sink after mounting a
semiconductor device into the printed circuit board,
be sure not to apply mechanical stress to the
semiconductor device and the external pins when
tightening up a heat sink with the screw.
e. When mounting the semiconductor device to the heat
sink using jigs, etc.,
• Take care not to allow the device to ride onto the jig
or positioning dowel.
• Design the jig so that no unreasonable mechanical
stress is applied to the semiconductor device.
f. Heat sink screw holes
• Be sure that chamfering and shear drop of heat sinks
must not be larger than the diameter of screw head
used.
Binding-head
machine-screw
Countersunkhead
machine screw
gap
Heat sink
via hole
LV56851UV
www.onsemi.com
25
• When using nuts, do not make the heat sink hole
diameters larger than the diameter of the head of the
screws used. A hole diameter about 15 % larger than
the diameter of the screw is recommended.
• When tap screws are used, be sure that the diameter
of the holes in the heat sink are not too small. A
diameter about 15 % smaller than the diameter of the
screw is recommended.
g. There is a method to mount the semiconductor device
to the heat sink by using a spring band. But this
method is not recommended because of possible
displacement due to fluctuation of the spring force
with time or vibration.
l2.4ifl.4 21. fiifl.‘ HEAT SPREADER (2M) 7 “m Him 011.75) ‘ ‘ a 1 1 :- 1" 77 ‘ fififig, +\ V m ‘ T ’ 7 7 L 7 7 7 / / ‘ ‘ ‘ E wimp ‘ ‘ 2 u u u u u u u ”' {L9H gfimeeeww ‘Fnr addmona‘ Information on our PbiFree strategy and smdenng uevaus, please nownmad me ON Semmunduclor Somenng and Muummg Techmques Relerence Manual, SOLDERRMID
LV56851UV
www.onsemi.com
26
Package Dimensions
unit : mm
HZIP15
CASE 945AB
ISSUE A
SOLDERING FOOTPRINT*
NOTE: The measurements are not to guarantee but for reference only.
Through Hole Area
Package name
HZIP15
(Unit: mm)
1.2
2.54
2.54
2.54
(1.91)
2.54
LV56851UV
www.onsemi.com
27
ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States
and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of
SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf . SCILLC reserves the right to make changes without
further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose,
nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can
and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated foreach
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are
not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was
negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject toall
applicable copyright laws and is not for resale in any manner.

Products related to this Datasheet

IC REG AUTO APPL 5OUT 15HZIP