Fiche technique pour IXY(H,Q)40N65C3D1 de IXYS

:I IXYS 20 24
© 2018 IXYS CORPORATION, All Rights Reserved
IXYH40N65C3D1
IXYQ40N65C3D1
VCES = 650V
IC110 = 40A
VCE(sat) 


2.35V
tfi(typ) = 20ns
DS100625A(11/18)
Extreme Light Punch Through
IGBT for 20-60 kHz Switching
Features
Optimized for 20-60kHz Switching
Square RBSOA
Anti-Parallel Fast Diode
Avalanche Rated
Short Circuit Capability
Advantages
High Power Density
Extremely Rugged
Low Gate Drive Requirement
Applications
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
High Frequency Power Inverters
Symbol Test Conditions Characteristic Values
(TJ = 25C, Unless Otherwise Specified) Min. Typ. Max.
BVCES IC = 250A, VGE = 0V 650 V
VGE(th) IC= 250A, VCE = VGE 3.5 6.0 V
ICES VCE = VCES, VGE = 0V 10 A
TJ = 150C 1.5 mA
IGES VCE = 0V, VGE = 20V 100 nA
VCE(sat) IC= 40A, VGE = 15V, Note 1 2.0 2.35 V
TJ = 150C 2.4 V
Symbol Test Conditions Maximum Ratings
VCES TJ= 25°C to 175°C 650 V
VCGR TJ= 25°C to 175°C, RGE = 1M 650 V
VGES Continuous ±20 V
VGEM Transient ±30 V
IC25 TC= 25°C 80 A
IC110 TC= 110°C 40 A
IF110 TC= 110°C 50 A
ICM TC= 25°C, 1ms 180 A
IATC= 25°C 20 A
EAS TC= 25°C 300 mJ
SSOA VGE = 15V, TVJ = 150°C, RG = 10 ICM = 80 A
(RBSOA) Clamped Inductive Load @VCE VCES
tsc VGE = 15V, VCE = 360V, TJ = 150°C 5 μs
(SCSOA) RG = 82, Non Repetitive
PCTC= 25°C 300 W
TJ-55 ... +175 °C
TJM 175 °C
Tstg -55 ... +175 °C
TLMaximum Lead Temperature for Soldering 300 °C
TSOLD 1.6 mm (0.062in.) from Case for 10s 260 °C
MdMounting Torque 1.13/10 Nm/lb.in
Weight TO-247 6.0 g
TO-3P 5.5 g
XPTTM 650V IGBT
GenX3TM w/ Diode
G = Gate C = Collector
E = Emitter Tab = Collector
Tab
G
C
E
TO-247
(IXYH)
GCE Tab
Preliminary Technical Information
TO-3P
(IXYQ)
INCHES MILJVE'ERS Mm MA) WN VVKX 190 205 4 a: 521 093 If“) 229 254 5va WWWW a—za> 07: ms 1 <21 2="" 1:.="" 0:5="" 255="" 11o="" 1="" on="" m:="" :u/="" m}="" dan="" m="" us="" 125="" 292="" 32c="" r="" w="" on="" a="" m="" u="" m="" e="" sue="" m="" ausn="" a="" [3‘="" 65c="" sgn="" 551="" v7="" 53="" e2="">< jen="" ms="" ‘27="" e="" 62:="" 535="" is="" 75="" \513="" h="" 545="" 555="" i381="" m="" 35="" e="" 215="" sc="" 5="" :5="" sc="" «i="" 77="" um="" 77="" m;-="" k="" 225="" am="" l="" m="" am="" is="" 51="" am="" u="" 150="" 170="" 3="" 81="" 4="" 32="" w="" 140="" lu="" 355="" 355="" 0d!="" m="" can="" sq:="" m="" 0="" 22:="" 24;="" 55s="" sen="" n="" \70="" .7:="" 4="" 3:="" 4="" a:="" 3="" p4?="" m="" 515="" am="" g:="" :="" 150°c="" 1.2="" a;="" w="" a="" an»="">
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYH40N65C3D1
IXYQ40N65C3D1
IXYS MOSFETs and IGBTs are covered 4,835,592 4,931,844 5,049,961 5,237,481 6,162,665 6,404,065 B1 6,683,344 6,727,585 7,005,734 B2 7,157,338B2
by one or more of the following U.S. patents: 4,860,072 5,017,508 5,063,307 5,381,025 6,259,123 B1 6,534,343 6,710,405 B2 6,759,692 7,063,975 B2
4,881,106 5,034,796 5,187,117 5,486,715 6,306,728 B1 6,583,505 6,710,463 6,771,478 B2 7,071,537
Notes:
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
Reverse Fast Recovery Diode (FRED)
Symbol Test Conditions Characteristic Values
(TJ = 25°C Unless Otherwise Specified) Min. Typ. Max.
VF IF = 30A, VGE = 0V, Note 1 2.5 V
TJ = 150°C 1.2 V
Irr TJ = 150°C 23 A
trr TJ = 150°C 120 ns
RthJC 0.60 °C/W
IF = 30A, VGE = 0V,
-diF/dt = 500A/μs, VR = 400V
Symbol Test Conditions Characteristic Values
(TJ = 25°C Unless Otherwise Specified) Min. Typ. Max.
gfs IC = 40A, VCE = 10V, Note 1 16 26 S
Cies 1950 pF
Coes VCE = 25V, VGE = 0V, f = 1MHz 205 pF
Cres 40 pF
Qg(on) 66 nC
Qge IC = 40A, VGE = 15V, VCE = 0.5 • VCES 13 nC
Qgc 32 nC
td(on) 23 ns
tri 40 ns
Eon 0.83 mJ
td(off) 110 ns
tfi 20 ns
Eoff 0.36 0.65 mJ
td(on) 24 ns
tri 40 ns
Eon 1.60 mJ
td(off) 130 ns
tfi 30 ns
Eoff 0.53 mJ
RthJC 0.50 °C/W
RthCS 0.25 °C/W
Inductive load, TJ = 25°C
IC = 30A, VGE = 15V
VCE = 400V, RG = 10
Note 2
Inductive load, TJ = 150°C
IC = 30A, VGE = 15V
VCE = 400V, RG = 10
Note 2
PRELIMINARY TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are
derived from a subjective evaluation of the design, based upon prior knowledge and experi-
ence, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right
to change limits, test conditions, and dimensions without notice.
TO-3P Outline
Pins: 1 - Gate 2 - Collector
3 - Emitter 4 - Collector
TO-247 Outline
R
L1
A2
Q
E
A
D
c
B
A
b
C
L
D
S D2
E1
A2 A2 A2
e
0P1
ixys option
A1
b4
b2
D1
0P O 0K M D B M
+
O J M C A M
+
12 3
4
+
+
PINS: 1 - Gate
2, 4 - Collector
3 - Emitter
IcW VCE (V) E a a E a z ch (W / // / a 9 m H 12 Veg-(Vt <3 ©="" 2015="" ixys="" corporation,="" au="" hiqms="" reserved="">
© 2018 IXYS CORPORATION, All Rights Reserved
IXYH40N65C3D1
IXYQ40N65C3D1
Fig. 1. Output Characteristics @ T
J
= 25
o
C
0
10
20
30
40
50
60
70
80
0 0.5 1 1.5 2 2.5 3 3.5 4
V
CE
(V)
I
C
(A)
V
GE
= 15V
13V
12V
7V
9V
10V
8V
11V
Fig. 2. Extended Output Characteristics @ T
J
= 25
o
C
0
40
80
120
160
200
240
0 5 10 15 20 25 30
V
CE
(V)
I
C
(
A)
V
GE
= 15V
12V
9V
13V
10V
8V
11V
14V
Fig. 3. Output Characteristics @ T
J
= 150
o
C
0
10
20
30
40
50
60
70
80
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
V
CE
(V)
I
C
(A)
8V
7V
9V
V
GE
= 15V
13V
12V
11V
10V
Fig. 4. Dependence of V
CE(sat)
on
Junction Temperature
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
-50 -25 0 25 50 75 100 125 150 175
T
J
(
o
C)
V
CE(sat)
- Normalized
V
GE
= 15V
I
C
= 40A
I
C
= 20A
I
C
= 80A
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
1
2
3
4
5
6
8 9 10 11 12 13 14 15
V
GE
- (V)
V
CE
(V)
I
C
= 80A
T
J
= 25
o
C
40A
20A
Fig. 6. Input Admittance
0
10
20
30
40
50
60
70
4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5
V
GE
(V)
I
C
(
A)
T
J
= 150
o
C
25
o
C
- 40
o
C
9 ’5 (SD veg (W In (N £1,000 a. 2 3 3 a «1 0 mu m a mo F < m="" 5="" ¥,="" 2="" r3="" um="" am="" 0001="" 00m="" 000001="" ixvs="" reserves="" the="" nght="" to="" change="" limwts‘="" test="" condihons,="" and="" dimenswons.="">
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYH40N65C3D1
IXYQ40N65C3D1
Fig. 7. Transconductance
0
5
10
15
20
25
30
35
40
0 1020304050607080
I
C
(A)
g
f s
(S)
T
J
= - 40
o
C
25
o
C
150
o
C
Fig. 10. Reverse-Bias Safe Operating Area
0
10
20
30
40
50
60
70
80
90
100 200 300 400 500 600 700
V
CE
(V)
I
C
(A)
T
J
= 150
o
C
R
G
= 10
dv / dt < 10V / ns
Fig. 12. Maximum Transient Thermal Impedance (IGBT)
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1
Pulse Width (s)
Z
(th)JC
(K / W)
Fig. 8. Gate Charge
0
2
4
6
8
10
12
14
16
0 10203040506070
Q
G
(nC)
V
GE
(V)
V
CE
= 325V
I
C
= 40A
I
G
= 10mA
Fig. 9. Capacitance
10
100
1,000
10,000
0 5 10 15 20 25 30 35 40
V
CE
(V)
Capacitance (pF)
f
= 1 MH
Cies
Coes
Cres
Fig. 11. Forward-Bias Safe Operating Area
0.001
0.01
0.1
1
10
100
1000
1 10 100 1000
V
DS
(V)
I
D
(A)
T
J
= 175
o
C
T
C
= 25
o
C
Sin
g
le Pulse
25μs
1ms
10ms
V
CE(sat)
Limit
100μs
DC
100ms
' IXYS \ \ Em Ean -- — "- TJ:150°C VGE:15V vapwav J" :2 2 5 § 5 5 w 90 7 ___ M an m Mam-'- ’ z ’ T1:150“c.veg:15v 7 I ’ 35 7D VCE:AODV ’ , a // ,/ 1’ so so ’ ' 5’“ a 251 5 5o 2 , 20 ' OD / / fa- ’ 777 __ <5 30="" fl="" ’="" "="" "="" 10="" 20="" 05="" m="" 5="" 5a="" 75="" mo=""><25><50 1mm="" r510)="" \="" \="" \="" m="" m—="" ‘dm/l="">--- , mo HG Dn.\/GE:|SV so \ VCE:AODV , ‘50 \ \ / 5o \ 14o ,- \ \ T :150‘C ‘— A 4/) \ \ J 2 "' c \ 5 c 340 Z 5203 v, 30 _ _ _ _ _ mo ' /// /n:25°c 20 so 10 an o 40 15 20 25 an 35 40 45 50 55 60 In (A) © 2015 IXYS CORPORATION, Au HIQMS Reserved
© 2018 IXYS CORPORATION, All Rights Reserved
IXYH40N65C3D1
IXYQ40N65C3D1
Fig. 13. Inductive Switching Energy Loss vs.
Gate Resistance
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
10 15 20 25 30 35 40 45 50 55
R
G
(Ω)
E
off
(mJ)
0
1
2
3
4
5
6
7
8
9
E
on
(mJ)
E
off
E
on
T
J
= 150
o
C , V
GE
= 15V
V
CE
= 400V
I
C
= 30A
I
C
= 60A
Fig. 16. Inductive Turn-off Switching Times vs.
Gate Resistance
10
20
30
40
50
60
70
80
90
10 15 20 25 30 35 40 45 50 55
R
G
(Ω)
t
f i
(ns)
80
120
160
200
240
280
320
360
400
t
d(off)
(ns)
t
f i
t
d(off)
T
J
= 150
o
C, V
GE
= 15V
V
CE
= 400V
I
C
= 60A
I
C
= 30A
Fig. 14. Inductive Switching Energy Loss vs.
Collector Current
0.0
0.4
0.8
1.2
1.6
2.0
15 20 25 30 35 40 45 50 55 60
I
C
(A)
E
off
(mJ)
0
1
2
3
4
5
E
on
(mJ)
E
off
E
on
R
G
= 10
,
V
GE
= 15V
V
CE
= 400V
T
J
= 25
o
C
T
J
= 150
o
C
Fig. 15. Inductive Switching Energy Loss vs.
Junction Temperature
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
25 50 75 100 125 150
T
J
C)
E
off
(mJ)
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
E
on
(mJ)
E
off
E
on
R
G
= 10
,
V
GE
= 15V
V
CE
= 400V
I
C
= 30A
I
C
= 60A
Fig. 17. Inductive Turn-off Switching Times vs.
Collector Current
0
10
20
30
40
50
60
70
80
15 20 25 30 35 40 45 50 55 60
I
C
(A)
t
f i
(ns)
40
60
80
100
120
140
160
180
200
t
d(off)
(ns)
t
f i
t
d(off)
R
G
= 10
, V
GE
= 15V
V
CE
= 400V
T
J
= 150
o
C
T
J
= 25
o
C
Fig. 18. Inductive Turn-off Switching Times vs.
Junction Temperature
10
20
30
40
50
60
70
80
25 50 75 100 125 150
T
J
(
o
C)
t
f i
(ns)
80
90
100
110
120
130
140
150
t
d(off)
(ns)
t
f i
t
d(off)
R
G
= 10
, V
GE
= 15V
V
CE
= 400V
I
C
= 30A, 60A
180 (so MD 120 nsp vmo In so so 40 20 180 (so MD 120 lmms) 15mm”; mo 7 so \\ so 40 \\ \\ \\ 20 \ 15 25 75 mo 125 1541 TJ (“CD IXVS Reserves the ngm to Change meus‘ Test Commons, and DImeflS‘OHS.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYH40N65C3D1
IXYQ40N65C3D1
Fig. 20. Inductive Turn-on Switching Times vs.
Collector Current
0
20
40
60
80
100
120
15 20 25 30 35 40 45 50 55 60
I
C
(A)
t
r i
(ns)
10
15
20
25
30
35
40
t
d(on)
(ns)
t
r i
t
d(on)
R
G
= 10
, V
GE
= 15V
V
CE
= 400V
TJ = 25
o
C, 150
o
C
Fig. 21. Inductive Turn-on Switching Times vs.
Junction Temperature
0
20
40
60
80
100
120
140
160
180
25 50 75 100 125 150
T
J
(
o
C)
t
r i
(ns)
20
22
24
26
28
30
32
34
36
38
t
d(on)
(ns)
t
r i
t
d(on)
R
G
= 10
, V
GE
= 15V
V
CE
= 400V
I
C
= 60A
I
C
= 30A
Fig. 19. Inductive Turn-on Switching Times vs.
Gate Resistance
0
20
40
60
80
100
120
140
160
180
200
10 15 20 25 30 35 40 45 50 55
R
G
(Ω)
t
r i
(ns)
10
20
30
40
50
60
70
80
90
100
110
t
d(on)
(ns)
t
r i
t
d(on)
T
J
= 150
o
C, V
GE
= 15V
V
CE
= 400V
I
C
= 30A
I
C
= 60A
:I IXYS m / m / n : Iaa‘c 50 : 25°C my \ m // m / m V; (V) Inn (A) 250 25 can (not MN (MS) 250 200 mm 160 Me 120 mu an mam (A/us) Fig. 27. Maximum Transient Thermal Imped \ w ‘ E / £01 / 3 / KT inw w"/ KFORR T4 (“0) Pu‘se Wm 15) © 2015 IXYS CORPORATION, Au HIQMS Reserved
© 2018 IXYS CORPORATION, All Rights Reserved IXYS REF: IXY_40N65C3D1(51) 8-12-14
IXYH40N65C3D1
IXYQ40N65C3D1
Fig. 22. Diode Forward Characteristics
0
10
20
30
40
50
60
70
80
00.5 11.5 22.5
V
F
(V)
I
F
(A)
T
J
= 150
o
C
T
J
= 25
o
C
Fig. 27. Maximum Transient Thermal Impedance (Diode)
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1 10
Pulse Width (s)
Z
(th)JC
(K / W)
Fig. 23. Reverse Recovery Charge vs. -di
F
/dt
0.9
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
250 300 350 400 450 500 550 600 650 700
-di
F
/ dt (A/μs)
Q
RR
(μC)
T
VJ
= 150
o
C
V
R
= 400V I
F
= 60A
15A
30A
Fig. 24. Reverse Recovery Current vs. -di
F
/dt
10
12
14
16
18
20
22
24
26
28
30
250 300 350 400 450 500 550 600 650 700
diF/dt (A/μs)
I
RR
(A)
15A
30A
I
F
= 60A
T
VJ
= 150
o
C
V
R
= 400V
Fig. 25. Reverse Recovery Time vs. -di
F
/dt
80
100
120
140
160
180
200
220
250 300 350 400 450 500 550 600 650 700
-di
F
/dt (A/μs)
t
RR
(ns)
30A
15A
I
F
= 60A
T
VJ
= 150
o
C
V
R
= 400V
Fig. 26. Dynamic Parameters Q
RR, IRR
vs.
Junction Temperature
0
0.2
0.4
0.6
0.8
1
1.2
0 20 40 60 80 100 120 140 160
TJ
C)
K
F
K
F
I
RR
K
F
Q
RR
V
R
= 400V
I
F
= 30A
-dI
F
/dt = 500 A/μs
IXYS A Lillelluse Tecnnumgy
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.