Fiche technique pour R2061x de Nisshinbo Micro Devices Inc.

RICOH —
R2061x SERIES
3 Wire Interface Real-Time Clock ICs with Battery Backup Switch-Over Function
NO.EA-112-160701
1
* R2061K (FFP12) is the discontinued product as of July, 2016.
OUTLINE
The R2061x is a CMOS real-time clock IC connected to the CPU by three signal lines, CE, SCLK, and SIO, and
configured to perform serial transmission of time and calendar data to the CPU. Further, battery backup
switchover circuit and a voltage detector. The periodic interrupt circuit is configured to generate interrupt signals
with six selectable interrupts ranging from 0.5 seconds to 1 month. The 2 alarm interrupt circuits generate interrupt
signals at preset times. As the oscillation circuit is driven under constant voltage, fluctuation of the oscillator
frequency due to supply voltage is small, and the time keeping current is small (TYP. 0.4A at 3V). The oscillation
halt sensing circuit can be used to judge the validity of internal data in such events as power-on; The supply
voltage monitoring circuit is configured to record a drop in supply voltage below two selectable supply voltage
monitoring threshold settings. The oscillation adjustment circuit is intended to adjust time counts with high
precision by correcting deviations in the oscillation frequency of the quartz crystal unit. Battery backup switchover
function is the automatic switchover circuit between a main power supply and a backup battery of primary or
secondary battery. Switchover is executed by monitoring the voltage of a main power supply, therefore the voltage
of a backup battery voltage is not relevant. Since the package for these ICs is SSOP16 (5.0x6.4x1.25: R2061Sxx)
and QFN023023-16(2.3×2.3×0.4:R2061Lxx), high density mounting of ICs on boards is possible.
FEATURES
Minimum Timekeeping supply voltage Typ. 0.75V (Max. 1.00V); VDD pin
Low power consumption Typ. 0.4A (Max. 1.0A) at VDD=3V
Built-in Backup switchover circuit (can be used for a primary battery, a secondary battery, or an electric
double layer capacitor)
Three signal lines (CE, SCLK, and SIO) required for connection to the CPU.
(Maximum clock frequency of 1MHz (with VCC = 3V) )
Time counters (counting hours, minutes, and seconds) and calendar counters (counting years, months, days,
and weeks) (in BCD format)
Interrupt circuit configured to generate interrupt signals (with interrupts ranging from 0.5 seconds to 1 month)
to the CPU and provided with an interrupt flag and an interrupt halt
2 alarm interrupt circuits (Alarm_W for week, hour, and minute alarm settings and Alarm_D for hour and
minute alarm settings)
Built-in voltage detector with delay
With Power-on flag to prove that the power supply starts from 0V
Supply voltage monitoring circuit with two supply voltage monitoring threshold settings
Automatic identification of leap years up to the year 2099
Selectable 12-hour and 24-hour mode settings
Built-in oscillation stabilization capacitors (CG and CD)
High precision oscillation adjustment circuit
CMOS process
Package SSOP16 (5.0mm x 6.4mm x 1.25mm : R2061Sxx)
FFP12(2.0mm x 2.0mm x 1.0mm :R2061Kxx)
QFN023023-16(2.3mm x 2.3mm x 0.4mm :R2061Lxx)
I: :I I: . :I m I: 3 14 :| NC SCLK I: 4 13 :lOSCIN SlOl: 5 12 :lOSCOUT Mel: B 11 :IN0 CE I: 7 m j fin vss: a 9:ICIN TOP VIEW VDD V00 V88 SIO mmwm RICOH
R2061x
NO.EA-112-160701
2
* R2061K (FFP12) is the discontinued product as of July, 2016.
PIN CONFIGURATION
VDCC
SCLK
VCC
NC
NC
1
2
3
4
5
6
7
9
TOP VIEW
R2061Sxx (SSOP16)
VSB
13
15
SIO
NC
CE
NC
VDD
INT
R
10
11
12
14
OSCIN
CIN
8
16
VSS
OSCOUT
VDD
VCC
SIO
VSS
10
11
12
1
2
3
4
TOP VIEW
R2061Kxx (FFP12)
7
VSB
CE
SCLK
VDCC
CIN
5
6
9
8
OSCIN
OSCOUT
INTR
TOP VIEW
R2061Lxx (QFN023023-16)
VCC
N.C.
SIO
CIN
14
15
16
1
2
3
5
9
VSB
VSS
SCLK
VDCC
INTR
6
7
11
10
VDD
OSCIN
N.C.
8 13
N.C. OSCOUT
CE
4
12
N.C.
BLOCK DIAGRAM
OSCOUT
VSS
VDD
INTR
CPU power
supply
OSCIN
VCC
VSB
CPU
REAL
TIME
CLOCK
SCLK
CE
C3
BATTERY
VOLTAGE
MONITOR VDCC
VOLTAGE
DETECTOR
SW1
SW2
SIO
C2
R1
LEVEL
SHIFTER
DELAY
CIN VOLTAGE
REFERENCE
C1
RICOH
R2061x
NO.EA-112-160701
3
* R2061K (FFP12) is the discontinued product as of July, 2016.
SELECTION GUIDE
In the R2061xxx Series, the package and the output voltage can be designated.
Part Number is designated as follows:
R2061 L 01 - E2 - F Part Number
R2061 a bb - cc d
Code Description
a
Designation of the package.
K: FFP12
S: SSOP16
L: QFN023023-16
bb Serial number of Voltage detector setting etc.
cc Designation of the taping type. Only E2 is available.
d Designation of the lead plating (SSOP16 only).
F: Lead free plating
Part Number Package -VDET1
(switch-over threshold)
R2061K01-E2 FFP12 1.70(Typ.)
R2061K03-E2 FFP12 2.80(Typ.)
R2061L01-E2 QFN023023-16 1.70(Typ.)
R2061L03-E2 QFN023023-16 2.80(Typ.)
R2061S02-E2-F SSOP16 2.40(Typ.)
RICOH
R2061x
NO.EA-112-160701
4
* R2061K (FFP12) is the discontinued product as of July, 2016.
PIN DESCRIPTION
Symbol Item Description
CE Chip enable
Input The CE pin is used for interfacing with the CPU. Should be held high to
allow access to the CPU. Incorporates a pull-down resistor. Should be
held low or open when the CPU is powered off. Allows a maximum input
voltage of 5.5 volts regardless of supply voltage.
SCLK Serial
Clock Input The SCLK pin is used to input clock pulses synchronizing the input and
output of data to and from the SIO pin. Allows a maximum input voltage of
5.5 volts regardless of supply voltage.
SIO Serial
Input / Output The SIO pin is used to input or output data intended for writing or reading in
synchronization with the SCLK pin.
INT
R
Interrupt
Output The INTR pin is used to output alarm interrupt (Alarm_W) and alarm
interrupt (Alarm_D) and output periodic interrupt signals to the CPU signals.
Disabled at power-on from 0V. Nch. open drain output.
VCC Main Battery
input Supply power to the IC.
VSB Power Supply
Input for Backup
Battery
Connect a primary battery for backup. Normally, power is supplied from
VCC to the IC. If VCC level is equal or less than –VDET1, power is supplied
from this pin.
OSCIN
OSCOUT Oscillation
Circuit
Input / Output
The OSCIN and OSCOUT pins are used to connect the 32.768-kHz quartz
crystal unit (with all other oscillation circuit components built into the
R2061x).
VDD
Positive Power
Supply Input The VDD pin is connected to the power supply. Connect a capacitor as
much as 0.1F between VDD and VSS. In the case of using a secondary
battery, connecting the secondary battery to this pin is possible.
VDCC VCC Power
Supply Monitoring
Result Output
While monitoring VCC Power supply, if the voltage is equal or lower than
–VDET1, this output level is “L”. When VDCC becomes “L”, SW1 turns off
and SW2 turns on. As a result, power is supplied from VSB pin to the
internal real time clock. When VCC is equal to +VDET1 or more, SW1 turns on
and SW2 turns off. After t DELAY passed, VDCC output becomes off, or
“H”.
Nch Open-drain output.
CIN Noise Bypass Pin To stabilize the internal reference, connect a capacitor as much as 0.1uF
between this pin and VSS.
VSS Negative Power
Sup Supply Input The VSS pin is grounded.
N.C. No Connection
RICOH
R2061x
NO.EA-112-160701
5
* R2061K (FFP12) is the discontinued product as of July, 2016.
ABSOLUTE MAXIMUM RATINGS
(VSS=0V)
Symbol Item Pin Name Description Unit
VCC Supply Voltage 1 VCC -0.3 to +6.5 V
VDD Supply Voltage 2 VDD -0.3 to +6.5 V
VSB Supply Voltage 3 VSB -0.3 to +6.5 V
VI Input Voltage 1 CE, SCLK -0.3 to +6.5 V
Input Voltage 2 SIO -0.3 to VCC+0.3 V
Input Voltage 3 CIN -0.3 to VDD+0.3 V
VO Output Voltage 1 INT
R
, VDCC -0.3 to +6.5 V
Output Voltage 2 SIO -0.3 to VCC+0.3 V
IOUT Maximum Output Current VDD 10 mA
PD Power Dissipation Topt = 25C 300 mW
Topt Operating Temperature -40 to +85 C
Tstg Storage Temperature -55 to +125 C
RECOMMENDED OPERATING CONDITIONS
(VSS=0V, Topt=-40 to +85C)
Symbol Item Pin Name Min, Typ. Max. Unit
Vaccess Supply Voltage VCC power supply
voltage for interfacing
with CPU
-VDET1
*1) 5.5 V
VCLK Minimum Timekeeping
Voltage
CGout,CDout=0pF
*2), *3)
0.75 1.00 V
fXT Oscillation Frequency 32.768 kHz
VPUP Pull-up Voltage INTR , VDCC 5.5 V
*1) -VDET1 in Vaccess specification is guaranteed by design.
*2) CGout is connected between OSCIN and VSS, CDout is connected between OSCOUT and VSS.
R2061x incorporates the capacitors between OSCIN and VSS, between OSCOUT and VSS.
Then normally, CGout and CDout are not necessary.
*3) Quartz crystal unit: CL=6-8pF, R1=30K
_. JJ £2 INTR VDCC AVDET H RICOH
R2061x
NO.EA-112-160701
6
* R2061K (FFP12) is the discontinued product as of July, 2016.
DC ELECTRICAL CHARACTERISTICS
R2061K01, R2061L01
(Unless otherwise specified: VSS=0V, VSB=3.0V, VCC=2.0V, 0.1uF between VDD and VSS, CIN and VSS,
Topt=-40 to +85C)
Symbol Item Pin Name Conditions Min. Typ. Max. Unit
VIH1 “H” Input Voltage 1 CE, SCLK 0.8xVCC 5.5
V
VIH2 “H” Input Voltage 2 SIO 0.8xVCC VCC+0.3
VIL “L” Input Voltage CE, SIO
SCLK -0.3 0.2xVCC
IOH “H” Output
Current SIO VOH=VCC-0.5V -0.5 mA
IOL1 “L” Output Current 1 SIO VOL=0.4V 0.5
mA
IOL2 “L” Output Current 2 INTR 2.0
IOL3 “L” Output Current 3 INTR VDD,VSB,VCC=1.4V
VOL=0.4V 0.2
IIL Input Leakage
Current SCLK VI=5.5V or VSS -1.0 1.0
A
RDNCE Pull-down Input
register CE 40 120 400
k
IOZ1 Output Off-state
Current 1 SIO VO=5.5V or VSS -1.0 1.0
A
IOZ2 Output Off-state
Current 2 INT
R
,
VDCC
VO=5.5V or VSS
-1.0 1.0
A
ISB Time Keeping Current
at Backup mode VSB VCC=0V, VSB=3.0V,
VDD, Output=OPEN 0.4 1.0
A
ISBL Leakage Current of
Backup pin at
VCC_on
VSB VCC=3.0V,
VSB=5.5V or 0V,
VDD, Output=OPEN
-1.0 1.0
A
VDETH Supply Voltage
Monitoring Voltage “H” VSB
Topt=25C 1.90 2.10 2.30 V
VDETL Supply Voltage
Monitoring Voltage “L” VDD
Topt=25C 1.20 1.35 1.50 V
-VDET1 Detector Threshold
Voltage
(falling edge of VCC)
VCC Topt=25C 1.657 1.700 1.743 V
+VDET1 Detector Released
Voltage (rising edge of
VCC)
VCC Topt=25C 1.731 1.785 1.839 V
VDET
Topt Detector Threshold
and Released Voltage
Temperature coefficient
VCC, VSB Topt=-40 to 85C
*1) 100 ppm
/C
VDDOUT1 VDD Output
Voltage 1 VDD Topt=25C, VCC=2.0V,
Iout=0.5mA VCC-
0.12 VCC-
0.04 V
VDDOUT2 VDD Output
Voltage 2 VDD Topt=25C, VCC=1.4V,
VSB=3.0V, Iout=0.1mA VSB-
0.08 VSB-
0.02 V
CG Internal Oscillation
Capacitance 1 OSCIN 10 pF
CD Internal Oscillation
Capacitance 2 OSCOUT 10
*1) Guaranteed by design.
INTFl INTH VDCC AVDET RICOH
R2061x
NO.EA-112-160701
7
* R2061K (FFP12) is the discontinued product as of July, 2016.
R2061S02
(Unless otherwise specified: VSS=0V,VSB=VCC=3.0V, 0.1uF between VDD and VSS, CIN and VSS,
Topt=-40 to +85C)
Symbol Item Pin Name Conditions Min. Typ. Max. Unit
VIH1 “H” Input Voltage 1 CE, SCLK 0.8xVCC 5.5
V
VIH2 “H” Input Voltage 2 SIO 0.8xVCC VCC+0.3
VIL “L” Input Voltage CE, SCLK
SIO -0.3 0.2xVCC
IOH “H” Output
Current SIO VOH=VCC-0.5V -0.5 mA
IOL1 “L” Output Current 1 SIO VOL=0.4V 0.5
mA
IOL2 “L” Output Current 2 INT
R
2.0
IOL3 “L” Output Current 3 VDCC VDD,VSB,VCC=2.0V
VOL=0.4V 0.5
IIL Input Leakage
Current SCLK VI=5.5V or VSS -1.0 1.0
A
RDNCE Pull-down Input
register CE 40 120 400
k
IOZ1 Output Off-state
Current 1 SIO VO=5.5V or VSS -1.0 1.0
A
IOZ2 Output Off-state
Current 2 INT
R
,
VDC
C
VO=5.5V or VSS
-1.0 1.0
A
ISB Time Keeping Current
at Backup mode VSB VCC=0V, VSB=3.0V,
VDD, Output=OPEN 0.4 1.0
A
ISBL Leakage Current of
Backup pin at
VCC_on
VSB VCC=3.0V,
VSB=5.5V or 0V,
VDD, Output=OPEN
-1.0 1.0
A
VDETH Supply Voltage
Monitoring Voltage “H” VSB
Topt=25C 1.90 2.10 2.30 V
VDETL Supply Voltage
Monitoring Voltage “L” VDD
Topt=25C 1.20 1.35 1.50 V
-VDET1 Detector Threshold
Voltage
(falling edge of VCC)
VCC Topt=25C 2.34 2.40 2.46 V
+VDET1 Detector Released
Voltage (rising edge of
VCC)
VCC Topt=25C 2.44 2.52 2.60 V
VDET
Topt Detector Threshold
and Released Voltage
Temperature coefficient
VCC, VSB Topt=-40 to 85C
*1) 100 ppm
/C
VDDOUT1 VDD Output
Voltage 1 VDD Topt=25C, VCC=3.0V,
Iout=1.0mA VCC-
0.12 VCC-
0.04 V
VDDOUT2 VDD Output
Voltage 2 VDD Topt=25C, VCC=2.0V,
VSB=3.0V, Iout=0.1mA VSB-
0.08 VSB-
0.02 V
CG Internal Oscillation
Capacitance 1 OSCIN 10 pF
CD Internal Oscillation
Capacitance 2 OSCOUT 10
*1) Guaranteed by design.
EE‘ §|| AVDET RICOH
R2061x
NO.EA-112-160701
8
* R2061K (FFP12) is the discontinued product as of July, 2016.
R2061K03, R2061L03
(Unless otherwise specified: VSS=0V, VSB=3.0V, VCC=3.3V, 0.1uF between VDD and VSS, CIN and VSS,
Topt=-40 to +85C)
Symbol Item Pin Name Conditions Min. Typ. Max. Unit
VIH1 “H” Input Voltage 1 CE, SCLK 0.8x
VCC 5.5
V
VIH2 “H” Input Voltage 2 SIO 0.8x
VCC V
CC+0.3
VIL “L” Input Voltage CE, SCLK
SIO -0.3 0.2xVCC
IOH “H” Output
Current SIO VOH=VCC-0.5V -0.5 mA
IOL1 “L” Output Current 1 SIO VOL=0.4V 0.5
mA
IOL2 “L” Output Current 2 INTR 2.0
IOL3 “L” Output Current 3 VDC
C
VDD,VSB,VCC=2.0V
VOL=0.4V 0.5
IIL Input Leakage
Current SCLK VI=5.5V or VSS -1.0 1.0
A
RDNCE Pull-down Input
register CE 40 120 400
k
IOZ1 Output Off-state
Current 1 SIO VO=5.5V or VSS -1.0 1.0
A
IOZ2 Output Off-state
Current 2 INTR ,
VDC
C
VO=5.5V or VSS
-1.0 1.0
A
ISB Time Keeping Current
at Backup mode VSB VCC=0V, VSB=3.0V,
VDD, Output=OPEN 0.4 1.0
A
ISBL Leakage Current of
Backup pin at
VCC_on
VSB VCC=3.3V,
VSB=5.5V or 0V,
VDD, Output=OPEN
-1.0 1.0
A
VDETH Supply Voltage
Monitoring Voltage
“H”
VSB
Topt=25C 1.90 2.10 2.30 V
VDETL Supply Voltage
Monitoring Voltage “L” VDD
Topt=25C 1.20 1.35 1.50 V
-VDET1 Detector Threshold
Voltage
(falling edge of VCC)
VCC Topt=25C 2.73 2.80 2.87 V
+VDET1 Detector Released
Voltage (rising edge
of VCC)
VCC Topt=25C 2.85 2.94 3.03 V
VDET
Topt Detector Threshold
and Released Voltage
Temperature
coefficient
VCC,
VSB Topt=-40 to 85C
*1) 100 ppm
/C
VDDOUT1 VDD Output
Voltage 1 VDD Topt=25C, VCC=3.3V,
Iout=1.0mA VCC-
0.12 VCC-
0.04 V
VDDOUT2 VDD Output
Voltage 2 VDD Topt=25C, VCC=2.0V,
VSB=3.0V, Iout=0.1mA VSB-
0.08 VSB-
0.02 V
CG Internal Oscillation
Capacitance 1 OSCIN 10 pF
CD Internal Oscillation
Capacitance 2 OSCOUT 10
*1) Guaranteed by design.
R2061x
NO.EA-112-160701
9
* R2061K (FFP12) is the discontinued product as of July, 2016.
AC ELECTRICAL CHARACTERISTICS
Unless otherwise specified: VSS=0V,Topt=-40 to +85C
Input and Output Conditions: VIH=0.8VCC,VIL=0.2VCC,VOH=0.8VCC,VOL=0.2VCC,CL=50pF
Sym
-bol Item Condi-
Tions VDD1.7V *1) Unit
Min. Typ. Max.
tCES CE Set-up Time 400 ns
tCEH CE Hold Time 400 ns
tCR CE Recovery Time 62
s
fSCLK SCLK Clock Frequency 1.0 MHz
tCKH SCLK Clock ”H” Time 400 ns
tCKL SCLK Clock ”L” Time 400 ns
tCKS SCLK Set-up Time 200 ns
tRD Data Output Delay Time 300 ns
tRZ Data Output Floating Time 300 ns
tCEZ Data Output Delay Time After
Falling of CE 300 ns
tDS Input Data Set-up Time 200 ns
tDH Input Data Hold Time 200 ns
tDELAY Output Delay Time of Voltage
Detector
Time
Keeping 100 105 110 ms
*1) VCC voltage interfacing with CPU is defined by Vaccess (P.5 RECOMMENDED OPERATING
CONDITIONS)
*) For reading/writing timing, see “P.31 Interfacing with the CPU Considerations in Reading and Writing
Time Data under special condition”.
SCLK
tCES
SIO(read cycle)
SIO(write cycle)
CE
tRD
tCKL
tCEZ
tDS tDH
tRD
tCEH
tCKH
tCKS tCR
tRZ
VDCC
VCC tDELAY
+VDET1
W 1P|N INDEX WIN—NW 1.0Max . 0.103 fiftiw 3:0.154 4 ll 0210.15 ,174 $1 mi? RICOH
R2061x
NO.EA-112-160701
10
* R2061K (FFP12) is the discontinued product as of July, 2016.
PACKAGE DIMENSIONS
R2061Kxx (Discontinued)
9 7
6
4
3 1
10
12
1PIN INDEX
2.00.1
0.20.15
0.35
2.00.1
2PIN INDEX
0.5
0.30.15
0.103
0.25
0.35
1.0Max
0.270.15
(BOTTOM VIEW)
0.5
0.05
0.170.1
unit: mm
fiHHHHHHé j RICOH
R2061x
NO.EA-112-160701
11
* R2061K (FFP12) is the discontinued product as of July, 2016.
R2061Sxx
16 9
1
M
8
4.40.2
6.40.3
0.50.3
0.225typ
0.65
0 to 10
0.10.1
0.10
0.15
0.22
0.15 +0.1
-
0
.
05
5.00.3
1.150.1
+0.1
-
0
.
05
unit: mm
7 :50”) 05 KDEHVQ w 8655“ .odwad INIMX / E005] A 305?. V UN T: mm ‘5— RC 4 :1 19mm ama- I 25:0 31) (11.0 _m LA. 86.3 o Bun o RICOH
R2061x
NO.EA-112-160701
12
* R2061K (FFP12) is the discontinued product as of July, 2016.
R2061Lxx
* Tab is VSS level. (They are connected to the
reverse side of this IC.)
The tab is better to be connected to the VSS.
*
The side of the all terminals have no plating treatment.
Therefore, it may not be able to form solder fillet on the side of the terminals.
VCC VDD VSS RICOH
R2061x
NO.EA-112-160701
13
* R2061K (FFP12) is the discontinued product as of July, 2016.
GENERAL DESCRIPTION
Battery Backup Switchover Function
The R2061x have two power supply input, or VCC and VSB. With monitoring VCC pin input voltage, which voltage
between the two is supplied to the internal power supply is decided.
Refer to the next table to see the state of the backup battery and internal power supply’s state of the IC by each
condition. VCCVDET1 VCCVDET1
VCCRTC, VDD
VDC
C
=OFF(H)
VSBRTC, VDD
VDCC=L
As a backup battery, not only a primary battery such as CR2025, LR44, or a secondary battery such as ML614,
TC616, but also an electric double layered capacitor or an aluminum capacitor can be used. Switchover point is
judged with the voltage of the main power (VCC), therefore, if the backup voltage is higher than main supply
voltage, switchover can be realized without extra load to the backup power supply.
VDD
VSB
VCC
VSS
0.1F
CPU Power
Supply
The case of back-up b
y
primary battery
CR2025
etc.
VSB
VDD
VCC
VSS
0.1F
CPU power
supply
ML614
etc.
The case of back-up by
capacitor or secondary battery
(Charging voltage is equal to CPU
power supply voltage)
VSB
VDD
VCC
VSS
0.1F
CPU power
supply
(3V)
5V
Double layer
capacitor
etc.
The case of back-up by
capacitor or secondary battery
(Charging voltage is not equal to
CPU power supply voltage)
Interface with CPU
The R2061x is connected to the CPU by three signal lines CE (Chip Enable), SCLK (Serial Clock), and SIO
(Serial Input / Output), through which it reads and writes data from and to the CPU. The CPU can be accessed
when the CE pin is held high. Access clock pulses have a maximum frequency of 1 MHz, allowing high-speed
data transfer to the CPU. VCC falls down under -VDET1, the R2061x stops accessing with CPU.
INTR RICOH
R2061x
NO.EA-112-160701
14
* R2061K (FFP12) is the discontinued product as of July, 2016.
Clock and Calendar Function
The R2061x reads and writes time data from and to the CPU in units ranging from seconds to the last two digits
of the calendar year. The calendar year will automatically be identified as a leap year when its last two digits are
a multiple of 4. Consequently, leap years up to the year 2099 can automatically be identified as such.
*) The year 2000 is a leap year while the year 2100 is not a leap year.
Alarm Function
The R2061x incorporates the alarm interrupt circuit configured to generate interrupt signals to the CPU at preset
times. The alarm interrupt circuit allows two types of alarm settings specified by the Alarm_W registers and the
Alarm_D registers. The Alarm_W registers allow week, hour, and minute alarm settings including combinations
of multiple day-of-week settings such as "Monday, Wednesday, and Friday" and "Saturday and Sunday". The
Alarm_D registers allow hour and minute alarm settings. The Alarm_W outputs from INT
R
pin, and the Alarm_D
outputs also from INTR pin. Each alarm function can be checked from the CPU by using a polling function.
High-precision Oscillation Adjustment Function
The R2061x has built-in oscillation stabilization capacitors (CG and CD), that can be connected to an external
quartz crystal unit to configure an oscillation circuit. Two kinds of accuracy for this function are alternatives. To
correct deviations in the oscillator frequency of the crystal, the oscillation adjustment circuit is configured to allow
correction of a time count gain or loss (up to 1.5ppm or 0.5ppm at 25C) from the CPU. The maximum range
is approximately 189ppm (or 63ppm) in increments of approximately 3ppm (or 1ppm). Such oscillation
frequency adjustment in each system has the following advantages:
* Allows timekeeping with much higher precision than conventional RTCs while using a quartz crystal unit with
a wide range of precision variations.
* Corrects seasonal frequency deviations through seasonal oscillation adjustment.
* Allows timekeeping with higher precision particularly with a temperature sensing function out of RTC, through
oscillation adjustment in tune with temperature fluctuations.
Power-on Reset, Oscillation Halt Sensing Function and Supply Voltage Monitoring Function
The R2061x has 3 power supply pins (VCC, VSB, VDD), among them, VCC pin and VDD pin have monitoring
function of supply voltage. VCC power supply monitoring circuit makes VDC
C
pin “L” when VCC power supply
pin becomes equal or lower than –VDET1. At the power-on of VCC, this circuit makes VDC
C
pin turn off, or “H”
after the delay time, tDELAY from when the VCC power supply pin becomes equal or more than +VDET1.
The R2061x incorporates an oscillation halt sensing circuit equipped with internal registers configured to record
any past oscillation halt, the oscillation halt sensing circuit, VDD monitoring flag, and power-on reset flag are
useful for judging the validity of time data.
Power on reset function reset the control resisters when the system is powered on from 0V. At the same time, the
fact is memorized to the resister as a flag, thereby identifying whether they are powered on from 0V or battery
backed-up.
The R2061x also incorporates a supply voltage monitoring circuit equipped with internal registers configured to
record any drop in supply voltage below a certain threshold value. Supply voltage monitoring threshold settings
can be selected between 2.1V and 1.35V through internal register settings. The sampling rate is normally 1s.
The oscillation halt sensing circuit is configured to confirm the established invalidation of time data in contrast to
the supply voltage monitoring circuit intended to confirm the potential invalidation of time data. Further, the supply
voltage monitoring circuit can be applied to battery supply voltage monitoring.
RICOH
R2061x
NO.EA-112-160701
15
* R2061K (FFP12) is the discontinued product as of July, 2016.
Periodic Interrupt Function
The R2061x incorporates the periodic interrupt circuit configured to generate periodic interrupt signals aside from
interrupt signals generated by the periodic interrupt circuit for output from the INTR pin. Periodic interrupt signals
have five selectable frequency settings of 2 Hz (once per 0.5 seconds), 1 Hz (once per 1 second), 1/60 Hz (once
per 1 minute), 1/3600 Hz (once per 1 hour), and monthly (the first day of every month). Further, periodic interrupt
signals also have two selectable waveforms, a normal pulse form (with a frequency of 2 Hz or 1 Hz) and special
form adapted to interruption from the CPU in the level mode (with second, minute, hour, and month interrupts).
The condition of periodic interrupt signals can be monitored with using a polling function.
\DE‘DS‘D4‘D3‘D2‘D1l id RICOH
R2061x
NO.EA-112-160701
16
* R2061K (FFP12) is the discontinued product as of July, 2016.
Address Mapping
Address Register Name D a t a
A3A2A1A0 D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 Second Counter -
*2)
S40 S20 S10 S8 S4 S2 S1
1 0 0 0 1 Minute Counter - M40 M20 M10 M8 M4 M2 M1
2 0 0 1 0 Hour Counter - - H20
P/
A
H10 H8 H4 H2 H1
3 0 0 1 1 Day-of-week Counter - - - - - W4 W2 W1
4 0 1 0 0 Day-of-month Counter - - D20 D10 D8 D4 D2 D1
5 0 1 0 1 Month Counter and
Century Bit 19 /20 - - MO10 MO8 MO4 MO2 MO1
6 0 1 1 0 Year Counter Y80 Y40 Y20 Y10 Y8 Y4 Y2 Y1
7 0 1 1 1 Oscillation Adjustment
Register *3) DEV
*4)
F6 F5 F4 F3 F2 F1 F0
8 1 0 0 0 Alarm_W
(Minute Register) - WM40 WM20 WM10 WM8 WM4 WM2 WM1
9 1 0 0 1 Alarm_W
(Hour Register) - - WH20
WP/
A
WH10 WH8 WH4 WH2 WH1
A 1 0 1 0 Alarm_W
(Day-of-week Register) - WW6 WW5 WW4 WW3 WW2 WW1 WW0
B 1 0 1 1 Alarm_D
(Minute Register) - DM40 DM20 DM10 DM8 DM4 DM2 DM1
C 1 1 0 0 Alarm_D
(Hour Register) - - DH20
DP/
A
DH10 DH8 DH4 DH2 DH1
D 1 1 0 1 - - - - - - - -
E 1 1 1 0 Control Register 1 *3) WALE DALE 12 /24 SCRA-
TCH2
TEST CT2 CT1 CT0
F 1 1 1 1 Control Register 2 *3) VDSL VDET XST PON
*5)
SCRA-
TCH1
CTFG WAFG DAFG
Notes:
* 1) All the data listed above accept both reading and writing.
* 2) The data marked with "-" is invalid for writing and reset to 0 for reading.
* 3) When the PON bit is set to 1 in Control Register 2, all the bits are reset to 0 in Oscillation Adjustment
Register, Control Register 1 and Control Register 2 excluding the XS
T
bit.
* 4) When DEV=0, the oscillation adjustment circuit is configured to allow correction of a time count gain
or loss up to 1.5ppm.
When DEV=1, the oscillation adjustment circuit is configured to allow correction of a time count gain
or loss up to or 0.5ppm.
* 5) PON is a power-on-reset flag.
registers and the AlarmiD registers). at the Near RICOH
R2061x
NO.EA-112-160701
17
* R2061K (FFP12) is the discontinued product as of July, 2016.
Register Settings
Control Register 1 (ADDRESS Eh)
D7 D6 D5 D4 D3 D2 D1 D0
WALE DALE 12 /24 SCRA
TCH2 TEST CT2 CT1 CT0 (For Writing)
WALE DALE 12 /24 SCRA
TCH2 TEST CT2 CT1 CT0 (For Reading)
0 0 0 0 0 0 0 0 Default Settings *)
*) Default settings: Default value means read / written values when the PON bit is set to “1” due to VDD
power-on from 0 volts.
(1) WALE, DALE Alarm_W Enable Bit, Alarm_D Enable Bit
WALE,DALE Description
0 Disabling the alarm interrupt circuit (under the control of the settings
of the Alarm_W registers and the Alarm_D registers). (Default)
1 Enabling the alarm interrupt circuit (under the control of the settings
of the Alarm_W registers and the Alarm_D registers)
(2) 12 /24 12 /24-hour Mode Selection Bit
12 /24 Description
0 Selecting the 12-hour mode with a.m. and p.m. indications. (Default)
1 Selecting the 24-hour mode
Setting the 1
2
/24 bit to 0 and 1 specifies the 12-hour mode and the 24-hour mode, respectively.
24-hour mode 12-hour mode 24-hour mode 12-hour mode
00 12 (AM12) 12 32 (PM12)
01 01 (AM 1) 13 21 (PM 1)
02 02 (AM 2) 14 22 (PM 2)
03 03 (AM 3) 15 23 (PM 3)
04 04 (AM 4) 16 24 (PM 4)
05 05 (AM 5) 17 25 (PM 5)
06 06 (AM 6) 18 26 (PM 6)
07 07 (AM 7) 19 27 (PM 7)
08 08 (AM 8) 20 28 (PM 8)
09 09 (AM 9) 21 29 (PM 9)
10 10 (AM10) 22 30 (PM10)
11 11 (AM11) 23 31 (PM11)
Setting the 1
2
/24 bit should precede writing time data
(3) SCRATCH2 Scratch Bit 2
SCRATCH2 Description
0 (Default)
1
The SCRATCH2 bit is intended for scratching and accepts the reading and writing of 0 and 1.
The SCRATCH2 bit will be set to 0 when the PON bit is set to 1 in the Control Register 1.
Normal operanon mode. RICOH
R2061x
NO.EA-112-160701
18
* R2061K (FFP12) is the discontinued product as of July, 2016.
(4) TEST Test Bit
TEST Description
0 Normal operation mode. (Default)
1 Test mode.
The TEST bit is used only for testing in the factory and should normally be set to 0.
(5) CT2,CT1, and CT0 Periodic Interrupt Selection Bits
CT2 CT1 CT0 Description
Wave form
mode Interrupt Cycle and Falling Timing
0 0 0 - OFF(H) (Default)
0 0 1 - Fixed at “L”
0 1 0 Pulse Mode
*1) 2Hz(Duty50%)
0 1 1 Pulse Mode
*1) 1Hz(Duty50%)
1 0 0 Level Mode
*2) Once per 1 second (Synchronized with
second counter increment)
1 0 1 Level Mode
*2) Once per 1 minute (at 00 seconds of
every minute)
1 1 0 Level Mode
*2) Once per hour (at 00 minutes and 00
seconds of every hour)
1 1 1 Level Mode
*2) Once per month (at 00 hours, 00
minutes,
and 00 seconds of first day of every
month)
* 1) Pulse Mode: 2-Hz and 1-Hz clock pulses are output in synchronization with the increment of the
second counter as illustrated in the timing chart below.
INTR Pin
Rewriting of the second counter
CTFG Bit
A
pprox. 92s
(Increment of second counter)
In the pulse mode, the increment of the second counter is delayed by approximately 92 s from the falling
edge of clock pulses. Consequently, time readings immediately after the falling edge of clock pulses may
appear to lag behind the time counts of the real-time clocks by approximately 1 second. Rewriting the
second counter will reset the other time counters of less than 1 second, driving the INTR pin low.
* 2) Level Mode: Periodic interrupt signals are output with selectable interrupt cycle settings of 1 second,
1 minute, 1 hour, and 1 month. The increment of the second counter is synchronized with the falling edge
of periodic interrupt signals. For example, periodic interrupt signals with an interrupt cycle setting of 1
second are output in synchronization with the increment of the second counter as illustrated in the timing
chart below.
RICOH
R2061x
NO.EA-112-160701
19
* R2061K (FFP12) is the discontinued product as of July, 2016.
(Increment of
second counter)
Setting CTFG bit to 0 Setting CTFG bit to 0
(Increment of
second counter) (Increment of
second counter)
CTFG Bit
INTR Pin
At the level mode, the moment right after writing CT2-CT0, INTR pin becomes "L" in very
short moment. In such a case, ignore it or confirm it by CTFG bit.
*1), *2) When the oscillation adjustment circuit is used, the interrupt cycle will fluctuate once per 20sec. or
60sec. as follows:
Pulse Mode: The “L” period of output pulses will increment or decrement by a maximum of 3.784 ms. For
example, 1-Hz clock pulses will have a duty cycle of 50 0.3784%.
Level Mode: A periodic interrupt cycle of 1 second will increment or decrement by a maximum of
3.784 ms.
threshold settings. Er __ Sensing a hat of oscillation 5 ET ET EH INTFl RICOH
R2061x
NO.EA-112-160701
20
* R2061K (FFP12) is the discontinued product as of July, 2016.
Control Register 2 (Address Fh)
D7 D6 D5 D4 D3 D2 D1 D0
VDSL VDET
XS
T
PON SCRA
TCH1 CTFG WAFG DAFG (For Writing)
VDSL VDET
XST PON SCRA
TCH1 CTFG WAFG DAFG (For Reading)
0 0
Indefinite 1 0 0 0 0 Default Settings *)
*) Default settings: Default value means read / written values when the PON bit is set to “1” due to VDD
power-on from 0 volts.
(1) VDSL VDD Supply Voltage Monitoring Threshold Selection Bit
VDSL Description
0 Selecting the VDD supply voltage monitoring threshold setting of
2.1v. (Default)
1 Selecting the VDD supply voltage monitoring threshold setting of
1.35v.
The VDSL bit is intended to select the VDD supply voltage monitoring threshold settings.
(2) VDET Supply Voltage Monitoring Result Indication Bit
VDET Description
0 Indicating supply voltage above the supply voltage monitoring
threshold settings. (Default)
1 Indicating supply voltage below the supply voltage monitoring
threshold settings.
Once the VDET bit is set to 1, the supply voltage monitoring circuit will be disabled while the VDET bit will
hold the setting of 1. The VDET bit accepts only the writing of 0, which restarts the supply voltage
monitoring circuit. Conversely, setting the VDET bit to 1 causes no event.
(3) XST Oscillation Halt Sensing Monitor Bit
XS
T
Description
0 Sensing a halt of oscillation
1 Sensing a normal condition of oscillation
The XS
T
accepts the reading and writing of 0 and 1. The XS
T
bit will be set to 0 when the oscillation halt
sensing. The XS
T
bit will hold 0 even after the restart of oscillation.
(4) PON Power-on-reset Flag Bit
PON Description
0 Normal condition
1 Detecting VDD power-on -reset (Default)
The PON bit is for sensing power-on reset condition.
* The PON bit will be set to 1 when VDD power-on from 0 volts. The PON bit will hold the setting of 1 even
after power-on.
* When the PON bit is set to 1, all bits will be reset to 0, in the Oscillation Adjustment Register, Control
Register 1, and Control Register 2, except XS
T
and PON. As a result, INT
R
pin stops outputting.
* The PON bit accepts only the writing of 0. Conversely, setting the PON bit to 1 causes no event.
Periodic interrupt outpu Indicating a mismatch between current time and preset ararm time WI'R m A‘ A RICOH
R2061x
NO.EA-112-160701
21
* R2061K (FFP12) is the discontinued product as of July, 2016.
(5) SCRATCH1 Scratch Bit 1
SCRATCH1 Description
0 (Default)
1
The SCRATCH1 bit is intended for scratching and accepts the reading and writing of 0 and 1. The
SCRATCH1 bit will be set to 0 when the PON bit is set to 1 in the Control Register 2.
(6) CTFG Periodic Interrupt Flag Bit
CTFG Description
0 Periodic interrupt output = “H” (Default)
1 Periodic interrupt output = “L”
The CTFG bit is set to 1 when the periodic interrupt signals are output from the INTR pin (“L”). The CTFG
bit accepts only the writing of 0 in the level mode, which disables (“H”) the INTR pin until it is enabled (“L”)
again in the next interrupt cycle. Conversely, setting the CTFG bit to 1 causes no event.
(7) WAFG,DAFG Alarm_W Flag Bit and Alarm_D Flag Bit
WAFG,DAFG Description
0 Indicating a mismatch between current time and preset alarm time (Default)
1 Indicating a match between current time and preset alarm time
The WAFG and DAFG bits are valid only when the WALE and DALE have the setting of 1, which is caused
approximately 31s after any match between current time and preset alarm time specified by the Alarm_W
registers and the Alarm_D registers. The WAFG (DAFG) bit accepts only the writing of 0. INT
R
pin
outputs off (“H”) when this bit is set to 0. And INT
R
pin outputs “L” again at the next preset alarm time.
Conversely, setting the WAFG and DAFG bits to 1 causes no event. The WAFG and DAFG bits will have
the reading of 0 when the alarm interrupt circuit is disabled with the WALE and DALE bits set to 0. The
settings of the WAFG and DAFG bits are synchronized with the output of the INTR pin as shown in the
timing chart below.
INTR
Pin
Writing of 0 to
WAFG(DAFG) bit
WAFG(DAFG) Bit
(Match between
current time and
preset alarm time)
A
pprox. 31s
A
pprox. 31s
Writing of 0 to
WAFG(DAFG) bit
(Match between
current time and
preset alarm time)
(Match between
current time and
preset alarm time)
RICOH
R2061x
NO.EA-112-160701
22
* R2061K (FFP12) is the discontinued product as of July, 2016.
Time Counter (Address 0-2h)
Second Counter (Address 0h)
D7 D6 D5 D4 D3 D2 D1 D0
- S40 S20 S10 S8 S4 S2 S1 (For Writing)
0 S40 S20 S10 S8 S4 S2 S1 (For Reading)
0 Indefinite Indefinite Indefinite Indefinite Indefinite Indefinite Indefinite Default Settings *)
Minute Counter (Address 1h)
D7 D6 D5 D4 D3 D2 D1 D0
- M40 M20 M10 M8 M4 M2 M1 (For Writing)
0 M40 M20 M10 M8 M4 M2 M1 (For Reading)
0 Indefinite Indefinite Indefinite Indefinite Indefinite Indefinite Indefinite Default Settings *)
Hour Counter (Address 2h)
D7 D6 D5 D4 D3 D2 D1 D0
- - P/
A
or H20
H10 H8 H4 H2 H1 (For Writing)
0 0 P/
A
or H20
H10 H8 H4 H2 H1 (For Reading)
0 0 Indefinite Indefinite Indefinite Indefinite Indefinite Indefinite Default Settings *)
*) Default settings: Default value means read / written values when the PON bit is set to “1” due to VDD
power-on from 0 volts.
* Time digit display (BCD format) as follows:
The second digits range from 00 to 59 and are carried to the minute digit in transition from 59 to 00.
The minute digits range from 00 to 59 and are carried to the hour digits in transition from 59 to 00.
The hour digits range as shown in "P17 Control Register 1 (ADDRESS Eh) (2) 12 /24: 1
2
/24-hour Mode
Selection Bit" and are carried to the day-of-month and day-of-week digits in transition from PM11 to AM12
or from 23 to 00.
* Any writing to the second counter resets divider units of less than 1 second.
* Any carry from lower digits with the writing of non-existent time may cause the time counters to malfunction.
Therefore, such incorrect writing should be replaced with the writing of existent time data.
RICOH
R2061x
NO.EA-112-160701
23
* R2061K (FFP12) is the discontinued product as of July, 2016.
Day-of-week Counter (Address 3h)
D7 D6 D5 D4 D3 D2 D1 D0
- - - - - W4 W2 W1 (For Writing)
0 0 0 0 0 W4 W2 W1 (For Reading)
0 0 0 0 0 Indefinite Indefinite Indefinite Default Settings *)
*) Default settings: Default value means read / written values when the PON bit is set to “1” due to VDD
power-on from 0 volts.
* The day-of-week counter is incremented by 1 when the day-of-week digits are carried to the day-of-month
digits.
* Day-of-week display (incremented in septimal notation):
(W4, W2, W1) = (0, 0, 0) (0, 0, 1)(1, 1, 0) (0, 0, 0)
* Correspondences between days of the week and the day-of-week digits are user-definable
(e.g. Sunday = 0, 0, 0)
* The writing of (1, 1, 1) to (W4, W2, W1) is prohibited except when days of the week are unused.
Calendar Counter (Address 4-6h)
Day-of-month Counter (Address 4h)
D7 D6 D5 D4 D3 D2 D1 D0
- - D20 D10 D8 D4 D2 D1 (For Writing)
0 0 D20 D10 D8 D4 D2 D1 (For Reading)
0 0 Indefinite Indefinite Indefinite Indefinite Indefinite Indefinite Default Settings *)
Month Counter + Century Bit (Address 5h)
D7 D6 D5 D4 D3 D2 D1 D0
1
9
/20 - -
MO10 MO8 MO4 MO2 MO1 (For Writing)
19 /20 0 0
MO10 MO8 MO4 MO2 MO1 (For Reading)
Indefinite 0 0 Indefinite Indefinite Indefinite Indefinite Indefinite Default Settings *)
Year Counter (Address 6h)
D7 D6 D5 D4 D3 D2 D1 D0
Y80 Y40 Y20 Y10 Y8 Y4 Y2 Y1 (For Writing)
Y80 Y40 Y20 Y10 Y8 Y4 Y2 Y1 (For Reading)
Indefinite Indefinite Indefinite Indefinite Indefinite Indefinite Indefinite Indefinite Default Settings *)
*) Default settings: Default value means read / written values when the PON bit is set to “1” due to VDD
power-on from 0 volts.
* The calendar counters are configured to display the calendar digits in BCD format by using the automatic
calendar function as follows:
The day-of-month digits (D20 to D1) range from 1 to 31 for January, March, May, July, August, October,
and December; from 1 to 30 for April, June, September, and November; from 1 to 29 for February in leap
years; from 1 to 28 for February in ordinary years. The day-of-month digits are carried to the month digits
in reversion from the last day of the month to 1. The month digits (MO10 to MO1) range from 1 to 12 and
are carried to the year digits in reversion from 12 to 1.
The year digits (Y80 to Y1) range from 00 to 99 (00, 04, 08, , 92, and 96 in leap years) and are carried
F5.F4.F3,F2.FL RICOH
R2061x
NO.EA-112-160701
24
* R2061K (FFP12) is the discontinued product as of July, 2016.
to the 19 /20 digits in reversion from 99 to 00.
The 19 /20 digits cycle between 0 and 1 in reversion from 99 to 00 in the year digits.
* Any carry from lower digits with the writing of non-existent calendar data may cause the calendar counters
to malfunction. Therefore, such incorrect writing should be replaced with the writing of existent calendar
data.
Oscillation Adjustment Register (Address 7h)
D7 D6 D5 D4 D3 D2 D1 D0
DEV F6 F5 F4 F3 F2 F1 F0 (For Writing)
DEV F6 F5 F4 F3 F2 F1 F0 (For Reading)
0 0 0 0 0 0 0 0 Default Settings *)
*) Default settings: Default value means read / written values when the PON bit is set to “1” due to VDD
power-on from 0 volts.
DEV bit
When DEV is set to 0, the Oscillation Adjustment Circuit operates 00, 20, 40 seconds.
When DEV is set to 1, the Oscillation Adjustment Circuit operates 00 seconds.
F6 to F0 bits
The Oscillation Adjustment Circuit is configured to change time counts of 1 second on the basis of
the settings of the Oscillation Adjustment Register at the timing set by DEV.
* The Oscillation Adjustment Circuit will not operate with the same timing (00, 20, or 40 seconds)
as the timing of writing to the Oscillation Adjustment Register.
* The F6 bit setting of 0 causes an increment of time counts by ((F5, F4, F3, F2, F1, F0) - 1) x 2.
The F6 bit setting of 1 causes a decrement of time counts by ((
F
5
,
F4
,
F
3
,
F
2
,
F1
,
F0 ) + 1) x 2.
The settings of "*, 0, 0, 0, 0, 0, *" ("*" representing either "0" or "1") in the F6, F5, F4, F3, F2, F1, and
F0 bits cause neither an increment nor decrement of time counts.
Example:
If (DEV, F6, F5, F4, F3, F2, F1, F0) is set to (0, 0, 0, 0, 0, 1, 1, 1), when the second digits read 00, 20,
or
40, an increment of the current time counts of 32768 + (7 - 1) x 2 to 32780 (a current time count loss).
If (DEV, F6, F5, F4, F3, F2, F1, F0) is set to (0, 0, 0, 0, 0, 0, 0, 1), when the second digits read 00, 20,
40, neither an increment nor a decrement of the current time counts of 32768.
If (DEV, F6, F5, F4, F3, F2, F1, F0) is set to (1, 1, 1, 1, 1, 1, 1, 0), when the second digits read 00, a
decrement of the current time counts of 32768 + (- 2) x 2 to 32764 (a current time count gain).
An increase of two clock pulses once per 20 seconds causes a time count loss of approximately 3 ppm (2
/ (32768 x 20 = 3.051 ppm). Conversely, a decrease of two clock pulses once per 20 seconds causes a
time count gain of 3 ppm. Consequently, when DEV is set to “0”, deviations in time counts can be
corrected with a precision of 1.5 ppm. In the same way, when DEV is set to “1”, deviations in time counts
can be corrected with a precision of 0.5 ppm. Note that the oscillation adjustment circuit is configured
to correct deviations in time counts and not the oscillation frequency of the 32.768-kHz clock pulses. For
further details, see "P36 Configuration of Oscillation Circuit and Correction of Time Count Deviations
Oscillation Adjustment Circuit".
K T2 T2 RICOH
R2061x
NO.EA-112-160701
25
* R2061K (FFP12) is the discontinued product as of July, 2016.
Alarm_W Registers (Address 8-Ah)
Alarm_W Minute Register (Address 8h)
D7 D6 D5 D4 D3 D2 D1 D0
- WM40 WM20 WM10 WM8 WM4 WM2 WM1 (For Writing)
0 WM40 WM20 WM10 WM8 WM4 WM2 WM1 (For Reading)
0 Indefinite Indefinite Indefinite Indefinite Indefinite Indefinite Indefinite Default Settings *)
Alarm_W Hour Register (Address 9h)
D7 D6 D5 D4 D3 D2 D1 D0
- - WH20
WP/
A
WH10 WH8 WH4 WH2 WH1 (For Writing)
0 0 WH20
WP/
A
WH10 WH8 WH4 WH2 WH1 (For Reading)
0 0 Indefinite Indefinite Indefinite Indefinite Indefinite Indefinite Default Settings *)
Alarm_W Day-of-week Register (Address Ah)
D7 D6 D5 D4 D3 D2 D1 D0
- WW6 WW5 WW4 WW3 WW2 WW1 WW0 (For Writing)
0 WW6 WW5 WW4 WW3 WW2 WW1 WW0 (For Reading)
0 Indefinite Indefinite Indefinite Indefinite Indefinite Indefinite Indefinite Default Settings *)
*) Default settings: Default value means read / written values when the PON bit is set to “1” due to VDD
power-on from 0 volts.
* The D5 bit of the Alarm_W Hour Register represents WP/
A
when the 12-hour mode is selected (0 for
a.m. and 1 for p.m.) and WH20 when the 24-hour mode is selected (tens in the hour digits).
* The Alarm_W Registers should not have any non-existent alarm time settings.
(Note that any mismatch between current time and preset alarm time specified by the Alarm_W registers
may disable the alarm interrupt circuit.)
* When the 12-hour mode is selected, the hour digits read 12 and 32 for 0 a.m. and 0 p.m., respectively.
(See "P17 Control Register 1 (ADDRESS Eh) (2) 1
2
/24: 1
2
/24-hour Mode Selection Bit")
* WW0 to WW6 correspond to W4, W2, and W1 of the day-of-week counter with settings ranging from (0, 0,
0) to (1, 1, 0).
* WW0 to WW6 with respective settings of 0 disable the outputs of the Alarm_W Registers.
k e e m 1m a D : Fri :Wed. :Th. :Tue. :Mon RICOH
R2061x
NO.EA-112-160701
26
* R2061K (FFP12) is the discontinued product as of July, 2016.
Example of Alarm Time Setting
Alarm Day-of-week 12-hour mode 24-hour mode
Preset alarm time Sun. Mon. Tue. Wed. Th. Fri. Sat. 10
hr. 1
hr. 10
min. 1
min. 10
hr. 1
hr. 10
min. 1
min.
WW0 WW1 WW2 WW3 WW4 WW5 WW6
00:00 a.m. on all days 1 1 1 1 1 1 1 1 2 0 0 0 0 0 0
01:30 a.m. on all days 1 1 1 1 1 1 1 0 1 3 0 0 1 3 0
11:59 a.m. on all days 1 1 1 1 1 1 1 1 1 5 9 1 1 5 9
00:00 p.m. on Mon. to
Fri. 0 1 1 1 1 1 0 3 2 0 0 1 2 0 0
01:30 p.m. on Sun. 1 0 0 0 0 0 0 2 1 3 0 1 3 3 0
11:59 p.m.
on Mon. ,Wed., and Fri. 0 1 0 1 0 1 0 3 1 5 9 2 3 5 9
Note that the correspondence between WW0 to WW6 and the days of the week shown in the above table
is only an example and not mandatory.
Alarm_D Register (Address B-Ch)
Alarm_D Minute Register (Address Bh)
D7 D6 D5 D4 D3 D2 D1 D0
- DM40 DM20 DM10 DM8 DM4 DM2 DM1 (For Writing)
0 DM40 DM20 DM10 DM8 DM4 DM2 DM1 (For Reading)
0 Indefinite Indefinite Indefinite Indefinite Indefinite Indefinite Indefinite Default Settings *)
Alarm_D Hour Register (Address Ch)
D7 D6 D5 D4 D3 D2 D1 D0
- - DH20
DP/
A
DH10 DH8 DH4 DH2 DH1 (For Writing)
0 0 DH20
DP/
A
DH10 DH8 DH4 DH2 DH1 (For Reading)
0 0 Indefinite Indefinite Indefinite Indefinite Indefinite Indefinite Default Settings *)
*) Default settings: Default value means read / written values when the PON bit is set to “1” due to VDD
power-on from 0 volts.
* The D5 bit represents DP/
A
when the 12-hour mode is selected (0 for a.m. and 1 for p.m.) and DH20
when the 24-hour mode is selected (tens in the hour digits).
* The Alarm_D registers should not have any non-existent alarm time settings.
(Note that any mismatch between current time and preset alarm time specified by the Alarm_D registers
may disable the alarm interrupt circuit.)
* When the 12-hour mode is selected, the hour digits read 12 and 32 for 0a.m. and 0p.m., respectively.
(See "P17 Control Register 1 (ADDRESS Eh) (2) 12 /24: 12 /24-hour Mode Selection Bit")
1 \ \ RICOH
R2061x
NO.EA-112-160701
27
* R2061K (FFP12) is the discontinued product as of July, 2016.
Interfacing with the CPU
DATA TRANSFER FORMATS
(1) Timing between CE Pin Transition and Data Input / Output
The R2061x adopts a 3-wire serial interface by which they use the CE (Chip Enable), SCLK (Serial Clock), and
SIO (Serial Input/Output) pins to receive and send data to and from the CPU. The 3-wire serial interface provides
two types of input/output timings with which the SIO pin output and input are synchronized with the rising or falling
edges of the SCLK pin input, respectively, and vice versa. The R2061x is configured to select either one of two
different input/output timings depending on the level of the SCLK pin in the low to high transition of the CE pin.
Namely, when the SCLK pin is held low in the low to high transition of the CE pin, the models will select the timing
with which the SIO pin output is synchronized with the rising edge of the SCLK pin input, and the input is
synchronized with the falling edge of the SCLK pin input, as illustrated in the timing chart below.
SCLK
SIO (for reading)
tDS
SIO (for writing)
CE tCES
tDH
tRD
Conversely, when the SCLK pin is held high in the low to high transition of the CE pin, the models will select the
timing with which the SIO pin output is synchronized with the falling edge of the SCLK pin input, and the input is
synchronized with the rising edge of the SCLK pin input, as illustrated in the timing chart below.
SCLK
SIO (for reading)
tDS
SIO (for writing)
CE tCES
tDH
tRD
SCLKW,,,,W H x x x x :3 ‘ . is ': E f 1 ‘ f D I RICOH
R2061x
NO.EA-112-160701
28
* R2061K (FFP12) is the discontinued product as of July, 2016.
(2) Data Transfer Formats
Data transfer is commenced in the low to high transition of the CE pin input and completed in its high to low
transition. Data transfer is conducted serially in multiple units of 1 byte (8 bits). The former 4 bits are used to
specify in the Address Pointer a head address with which data transfer is to be commenced from the host. The
latter 4 bits are used to select either reading data transfer or writing data transfer, and to set the Transfer Format
Register to specify an appropriate data transfer format. All data transfer formats are designed to transfer the
most significant bit (MSB) first.
A2
CE
SCL
K
6
A1 A0 C3 C2 C1 C0
A3
7582312314
D7 D6 D3 D2 D1 D0
Setting
the Address Pointer Writing or Reading data transferSetting the Transfer
Format Register
SIO
Two types of data transfer formats are available for reading data transfer and writing data transfer each.
Writing Data Transfer Formats
(1) 1-byte Writing Data Transfer Format
The first type of writing data transfer format is designed to transfer 1-byte data at a time and can be selected by
specifying in the address pointer a head address with which writing data transfer is to be commenced and then
writing the setting of 8h to the transfer format register. This 1-byte writing data transfer can be completed by
driving the CE pin low or continued by specifying a new head address in the address pointer and setting the data
transfer format.
1 1 Data Data
Example of 1-byte Writing Data Transfer (For Writing Data to Addresses Fh and 7h)
Data transfer from the host
CE
Data transfer from the RTCs
Specifying 7h
in the
A
ddress
Pointer
01 0 01 1
Setting 8h in
the Transfer
Format
Register
Writing data to
address Fh
Writing data to
address 7h
0 11 0 0 01 1
Specifying Fh
in the
A
ddress
Pointer
Setting 8h in
the Transfer
Format
Register
SIO
RICOH
R2061x
NO.EA-112-160701
29
* R2061K (FFP12) is the discontinued product as of July, 2016.
(2) Burst Writing Data Transfer Format
The second type of writing data transfer format is designed to transfer a sequence of data serially and can be
selected by specifying in the address pointer a head address with which writing data transfer is to be commenced
and then writing the setting of 0h to the transfer format register. The address pointer is incremented for each
transfer of 1-byte data and cycled from Fh to 0h. This burst writing data transfer can be completed by driving the
CE pin low.
1 0 Data Data
Example of Burst Writing Data Transfer (For Writing Data to Addresses Eh, Fh, and 0h)
CE
00 0 01 1
SIO Data
Data transfer from the host Data transfer from the RTCs
Writing data to
address Eh
Specifying Eh
in the
A
ddress
Pointer
Setting 0h in
the Transfer
Format
Register
Writing data to
address Fh
Writing data to
address 0h
Reading Data Transfer Formats
(1) 1-byte Reading Data Transfer Format
The first type of reading data transfer format is designed to transfer 1-byte data at a time and can be selected by
specifying in the Address Pointer a head address with which reading data transfer is to be commenced and then
the setting of writing Ch to the Transfer Format Register. This 1-byte reading data transfer can be completed by
driving the CE pin low or continued by specifying a new head address in the Address Pointer and selecting this
type of reading data Transfer Format.
1 0 Data Data
Example of 1-byte Reading Data Transfer (For Reading Data from Addresses Eh and 2h)
CE
11 0 01 1 0 10 1 0 00 1
SIO
Data transfer from the host Data transfer from the RTCs
Specifying 2h
in the
A
ddress
Pointer
Setting Ch in
the Transfer
Format
Register
Reading data from
address Eh
Reading data from
address 2h
Specifying Eh
in the
A
ddress
Pointer
Setting Ch in
the Transfer
Format
Register
\_ D RICOH
R2061x
NO.EA-112-160701
30
* R2061K (FFP12) is the discontinued product as of July, 2016.
(2) Burst Reading Data Transfer Format
The second type of reading data transfer format is designed to transfer a sequence of data serially and can be
selected by specifying in the address pointer a head address with which reading data transfer is to be commenced
and then writing the setting of 4h to the transfer format register. The address pointer is incremented for each
transfer of 1-byte data and cycled from Fh to 0h. This burst reading data transfer can be completed by driving the
CE pin low.
1 1 DATA DATA
Example of Burst Reading Data Transfer (For Reading Data from Addresses Fh, 0h, and 1h)
CE
10 0 01 1 DATASIO
Data transfer from the host Data transfer from the RTCs
Reading data from
address Fh
Specifying Fh
in the
A
ddress
Pointer
Setting 4h in
the Transfer
Format
Register
Reading data from
address 0h
Reading data from
address 1h
(3) Combination of 1-byte Reading and writing Data Transfer Formats
The 1-byte reading and writing data transfer formats can be combined together and further followed by any other
data transfer format.
1 1 DATA
Example of Reading Modify Writing Data Transfer
(For Reading and Writing Data from and to Address Fh)
CE
11 0 01 1 1 11 0 0 01 1 DATASIO
Data transfer from the host Data transfer from the RTCs
Writing data to
address Fh
Specifying Fh
in the
A
ddress
Pointer
Setting 8h in
the Transfer
Format
Register
Specifying Fh
in the
A
ddress
Pointer
Setting Ch in
the Transfer
Format
Register
Reading data from
address Fh
The reading and writing data transfer formats correspond to the settings in the transfer format register as shown
in the table below.
1 Byte Burst
Writing data
transfer 8h
(1,0,0,0) 0h
(0,0,0,0)
Reading data
transfer Ch
(1,1,0,0) 4h
(0,1,0,0)
RICOH
R2061x
NO.EA-112-160701
31
* R2061K (FFP12) is the discontinued product as of July, 2016.
Considerations in Reading and Writing Time Data under special condition
Any carry to the second digits in the process of reading or writing time data may cause reading or writing
erroneous time data. For example, suppose a carry out of 13:59:59 into 14:00:00 occurs in the process of
reading time data in the middle of shifting from the minute digits to the hour digits. At this moment, the second
digits, the minute digits, and the hour digits read 59 seconds, 59 minutes, and 14 hours, respectively (indicating
14:59:59) to cause the reading of time data deviating from actual time virtually 1 hour. A similar error also occurs
in writing time data. To prevent such errors in reading and writing time data, the R2061x has the function of
temporarily locking any carry to the second digits during the high interval of the CE pin and unlocking such a carry
in its high to low transition. Note that a carry to the second digits can be locked for only 1 second, during which
time the CE pin should be driven low.
CE
Time counts
within RTC
14:00:01
A
ctual time
13:59:59
Max.62s
14:00:00
13:59:59 14:00:00 14:00:01
The effective use of this function requires the following considerations in reading and writing time data:
(1) Hold the CE pin high in each session of reading or writing time data.
(2) Ensure that the high interval of the CE pin lasts within 1 second. Should there be any possibility of the host
going down in the process of reading or writing time data, make arrangements in the peripheral circuitry as to
drive the CE pin low or open at the moment that the host actually goes down.
(3) Leave a time span of 31s or more from the low to high transition of the CE pin to the start of access to
addresses 0h to 6h in order that any ongoing carry of the time digits may be completed within this time span.
For further details, see the next page.
(4) Leave a time span of 62s or more from the high to low transition of the CE pin to its low to high transition in
order that any ongoing carry of the time digits during the high interval of the CE pin may be adjusted within
this time span.
The considerations listed in (1), (3), and (4) above are not required when the process of reading or writing time
data is obviously free from any carry of the time digits.
(e.g. reading or writing time data in synchronization with the periodic interrupt function in the level mode or the
alarm interrupt function).
Bad examples of reading and writing time data are illustrated on the next page.
|_ A he hig Mme man Is Data _—-fl_ la (a RICOH
R2061x
NO.EA-112-160701
32
* R2061K (FFP12) is the discontinued product as of July, 2016.
0Ch Data
Data
Bad Example (1)
Where the CE pin is once driven low in the process of reading time data
Less than 62s
Writing to
A
ddress 0h (sec.)
CE
Bad Example (4)
(Where a time span of less than 61s is left between the adjacent processes of reading time data)
A
ddress Pointer
= 1h
Transfer Format
Register = 4h
0Ch Data Data
Reading from
A
ddress 1h
(min.)
Data
14h
CE
0Ch
Bad Example (3)
Where a time span of less than 31s is left until the start of the process of writing or reading time data
SIO
SIO
Reading from
A
ddress 0h
(sec.)
Reading from
A
ddress 2h
(hr.)
A
ddress Pointer
= 0h
Transfer Format
Register = Ch
Writing to
A
ddress 1h (min.)
Writing to
A
ddress Fh (contorl2)
A
ddress Pointer
= 0h
Transfer Format
Register = Ch
Reading from
A
ddress 0h
(sec.)
Reading from
A
ddress 0h
(sec.)
A
ddress Pointer
= 0h
Transfer Format
Register = Ch
Bad Example (2)
The hi
g
h interval of the CE
p
in is more than 1sec.
SIO 0Ch Data
Data
CE
Data
More than 1s
A
ddress Pointer
= 0h
Transfer Format
Register = Ch
Reading from
A
ddress 0h
(sec.)
Reading from
A
ddress 1h
(min)
Reading from
A
ddress 2h
(hr.)
CE
SIO
Time span of less than 31us for reading time data
1 1 Time Data
1 00 0 1 1 D0D1D2D7 D6 D5 D4 D3
CE
SIO 1 1 0 00 0 1 1 D6 D4 D2D3 D1 D0D7 D5 Time Data
Time Data
(READ
(WRTIE
Time Data
A
ddress Pointer = Fh
Format Register = 4h
Reading from
A
ddress Fh
Reading from
A
ddress 0h (sec.)
Reading from
A
ddress 1h (min)
Time span of less than 31us for writing time data
A
ddress Pointer = Fh
Format Register = 0h
M t: RICOH
R2061x
NO.EA-112-160701
33
* R2061K (FFP12) is the discontinued product as of July, 2016.
Configuration of Oscillation Circuit and Correction of Time Count
Deviations
Configuration of Oscillation Circuit
32kHz
CG
CD
A
OSCIN
OSCOUT
Oscillator
Circuit
The oscillation circuit is driven at a constant voltage of approximately 1.2 volts relative to the level of the VSS pin
input. As such, it is configured to generate an oscillating waveform with a peak-to-peak voltage on the order of
1.2 volts on the positive side of the VSS pin input.
< Considerations in Handling Quartz Crystal Units >
Generally, quartz crystal units have basic characteristics including an equivalent series resistance (R1) indicating
the ease of their oscillation and a load capacitance (CL) indicating the degree of their center frequency.
Particularly, quartz crystal units intended for use in the R2061x are recommended to have a typical R1 value of
30k and a typical CL value of 6 to 8pF. To confirm these recommended values, contact the manufacturers of
quartz crystal units intended for use in these particular models.
< Considerations in Installing Components around the Oscillation Circuit >
1) Install the quartz crystal unit in the closest possible vicinity to the real-time clock ICs.
2) Avoid laying any signal lines or power lines in the vicinity of the oscillation circuit (particularly in the area
marked "A" in the above figure).
3) Apply the highest possible insulation resistance between the OSCIN and OSCOUT pins and the printed circuit
board.
4) Avoid using any long parallel lines to wire the OSCIN and OSCOUT pins.
5) Take extreme care not to cause condensation, which leads to various problems such as oscillation halt.
< Other Relevant Considerations >
1) We cannot recommend connecting the external input of 32.768-kHz clock pulses to the OSCIN pin.
2) To maintain stable characteristics of the quartz crystal unit, avoid driving any other IC through 32.768-kHz
clock pulses output from the OSCOUT pin.
Typical externally-equipped element
X’tal : 32.768kHz
(R1=30k typ)
(CL=6pF to 8pF)
Standard values of internal elements
CG,CD 10pF typ
2768 HZ INTR RICOH
R2061x
NO.EA-112-160701
34
* R2061K (FFP12) is the discontinued product as of July, 2016.
Measurement of Oscillation Frequency
Frequency
Counter
32768Hz
VCC
OSCIN
OSCOUT
VDD
INTR
VSS
* 1) The R2061x is configured to generate 1Hz clock pulses for output from the INT
R
pin by setting
(00XX0011) at address Eh.
* 2) A frequency counter with 6 (more preferably 7) or more digits on the order of 1ppm is recommended for
use in the measurement of the oscillation frequency of the oscillation circuit.
Adjustment of Oscillation frequency
The oscillation frequency of the oscillation circuit can be adjusted by varying procedures depending on the usage
of Model R2061x in the system into which they are to be built and on the allowable degree of time count errors.
Course (A)
When the time count precision of each RTC is not to be adjusted, the quartz crystal unit intended for use in that
RTC may have any CL value requiring no presetting. The quartz crystal unit may be subject to frequency
variations which are selectable within the allowable range of time count precision. Several quartz crystal units
and RTCs should be used to find the center frequency of the quartz crystal units by the method described in "P34
Measurement of Oscillation Frequency" and then calculate an appropriate oscillation adjustment value by the
method described in "P36 Oscillation Adjustment Circuit" for writing this value to the R206x1.
Course (B)
When the time count precision of each RTC is to be adjusted within the oscillation frequency variations of the
quartz crystal unit plus the frequency variations of the real-time clock ICs, it becomes necessary to correct
deviations in the time count of each RTC by the method described in " P36 Oscillation Adjustment Circuit".
Such oscillation adjustment provides quartz crystal units with a wider range of allowable settings of their oscillation
frequency variations and their CL values. The real-time clock IC and the quartz crystal unit intended for use in
that real-time clock IC should be used to find the center frequency of the quartz crystal unit by the method
described in " P34 Measurement of Oscillation Frequency" and then confirm the center frequency thus found
to fall within the range adjustable by the oscillation adjustment circuit before adjusting the oscillation frequency
of the oscillation circuit. At normal temperature, the oscillation frequency of the oscillator circuit can be adjusted
by up to approximately 0.5ppm.
RICOH
R2061x
NO.EA-112-160701
35
* R2061K (FFP12) is the discontinued product as of July, 2016.
* 1) Generally, quartz crystal units for commercial use are classified in terms of their center frequency
depending on their load capacitance (CL) and further divided into ranks on the order of 10, 20, and
50ppm depending on the degree of their oscillation frequency variations.
* 2) Basically, Model R2061x is configured to cause frequency variations on the order of 5 to 10ppm at
25C.
* 3) Time count precision as referred to in the above flow chart is applicable to normal temperature and
actually affected by the temperature characteristics and other properties of quartz crystal units.
The R2061x, which incorporate the CG and the CD, require adjusting the oscillation frequency of the quartz
crystal unit through its CL value.
Generally, the relationship between the CL value and the CG and CD values can be represented by the following
equation:
CL = (CG CD)/(CG + CD) + CS where "CS" represents the floating capacity of the printed circuit board.
The quartz crystal unit intended for use in the R2061x is recommended to have the CL value on the order of 6 to
8pF. Its oscillation frequency should be measured by the method described in " P34 Measurement of
Oscillation Frequency". Any quartz crystal unit found to have an excessively high or low oscillation frequency
(causing a time count gain or loss, respectively) should be replaced with another one having a smaller and greater
CL value, respectively until another one having an optimum CL value is selected. In this case, the bit settings
disabling the oscillation adjustment circuit (see " P36 Oscillation Adjustment Circuit ") should be written to the
oscillation adjustment register.
Incidentally, the high oscillation frequency of the quartz crystal unit can also be adjusted by adding an external
oscillation stabilization capacitor CGOUT as illustrated in the diagram below.
32kHz
RD
CG
CD
OSCIN
OSCOUT CGOUT
*1)
Oscillator
Circuit
*1) The CGOUT should have a capacitance
ranging from 0 to 15 pF.
Osci‘latiun freguency , Target Freguency + 0.1 Osci‘latiun freguency , Target Freguency + 0.0333 RICOH
R2061x
NO.EA-112-160701
36
* R2061K (FFP12) is the discontinued product as of July, 2016.
Oscillation Adjustment Circuit
The oscillation adjustment circuit can be used to correct a time count gain or loss with high precision by varying
the number of 1-second clock pulses once per 20 seconds or 60 seconds. When DEV bit in the Oscillation
Adjustment Register is set to 0, R2061x varies number of 1-second clock pulses once per 20 seconds. When
DEV bit is set to 1, R2061x varies number of 1-second clock pulses once per 60 seconds. The oscillation
adjustment circuit can be disabled by writing the settings of "*, 0, 0, 0, 0, 0, *" ("*" representing "0" or "1") to the
F6, F5, F4, F3, F2, F1, and F0 bits in the oscillation adjustment circuit. Conversely, when such oscillation
adjustment is to be made, an appropriate oscillation adjustment value can be calculated by the equation below
for writing to the oscillation adjustment circuit.
(1) When Oscillation Frequency (* 1) Is Higher Than Target Frequency (* 2) (Causing Time Count Gain)
When DEV=0:
Oscillation adjustment value (*3) = (Oscillation frequency - Target Frequency + 0.1)
Oscillation frequency 3.051 10-6
(Oscillation Frequency – Target Frequency) 10 + 1
When DEV=1:
Oscillation adjustment value (*3) = (Oscillation frequency - Target Frequency + 0.0333)
Oscillation frequency 1.017 10-6
(Oscillation Frequency – Target Frequency) 30 + 1
* 1) Oscillation frequency:
32768 times the frequency of 1Hz clock pulse output from the INTR pin at normal temperature in the
manner described in " P34 Measurement of Oscillation Frequency".
* 2) Target frequency:
Desired frequency to be set. Generally, a 32.768-kHz quartz crystal unit has such temperature
characteristics as to have the highest oscillation frequency at normal temperature. Consequently, the
quartz crystal unit is recommended to have target frequency settings on the order of 32.768 to 32.76810
kHz (+3.05ppm relative to 32.768 kHz). Note that the target frequency differs depending on the
environment or location where the equipment incorporating the RTC is expected to be operated.
* 3) Oscillation adjustment value:
Value that is to be finally written to the F0 to F6 bits in the Oscillation Adjustment Register and is
represented in 7-bit coded decimal notation.
(2) When Oscillation Frequency Is Equal To Target Frequency (Causing Time Count neither Gain nor Loss)
Oscillation adjustment value = 0, +1, -64, or –63
OsciHation adjustment value : Oscillation freguency , Target Frequency OsciHation adjustment value : Oscillation freguency , Target Frequency RICOH
R2061x
NO.EA-112-160701
37
* R2061K (FFP12) is the discontinued product as of July, 2016.
(3) When Oscillation Frequency Is Lower Than Target Frequency (Causing Time Count Loss)
When DEV=0:
Oscillation adjustment value = (Oscillation frequency - Target Frequency)
Oscillation frequency 3.051 10-6
(Oscillation Frequency – Target Frequency) 10
When DEV=1:
Oscillation adjustment value = (Oscillation frequency - Target Frequency)
Oscillation frequency 1.017 10-6
(Oscillation Frequency – Target Frequency) 30
Oscillation adjustment value calculations are exemplified below
(A) For an oscillation frequency = 32768.85Hz and a target frequency = 32768.05Hz
When setting DEV bit to 0:
Oscillation adjustment value = (32768.85 - 32768.05 + 0.1) / (32768.85 3.051 10-6)
(32768.85 - 32768.05) 10 + 1
= 9.001 9
In this instance, write the settings (DEV,F6,F5,F4,F3,F2,F1,F0)=(0,0,0,0,1,0,0,1) in the oscillation adjustment
register. Thus, an appropriate oscillation adjustment value in the presence of any time count gain represents a
distance from 01h.
When setting DEV bit to 1:
Oscillation adjustment value = (32768.85 - 32768.05 + 0.0333) / (32768.85 1.017 10-6)
(32768.85 - 32768.05) 30 + 1
= 25.00 25
In this instance, write the settings (DEV,F6,F5,F4,F3,F2,F1,F0)=(1,0,0,1,1,0,0,1) in the oscillation adjustment
register.
(B) For an oscillation frequency = 32762.22Hz and a target frequency = 32768.05Hz
When setting DEV bit to 0:
Oscillation adjustment value = (32762.22 - 32768.05) / (32762.22 3.051 10-6)
(32762.22 - 32768.05) 10
= -58.325 -58
To represent an oscillation adjustment value of - 58 in 7-bit coded decimal notation, subtract 58 (3Ah) from 128
(80h) to obtain 46h. In this instance, write the settings of (DEV,F6,F5,F4,F3,F2,F1,F0) = (0,1,0,0,0,1,1,0) in the
oscillation adjustment register. Thus, an appropriate oscillation adjustment value in the presence of any time
count loss represents a distance from 80h.
When setting DEV bit to 1:
Oscillation adjustment value = (32762.22 - 32768.05) / (32762.22 1.017 10-6)
(32762.22 - 32768.05) 30
= -174.97 -175
Oscillation adjustment value can be set from -62 to 63. Then, in this case, Oscillation adjustment value is out of
range.
1 [me RICOH
R2061x
NO.EA-112-160701
38
* R2061K (FFP12) is the discontinued product as of July, 2016.
(4) Difference between DEV=0 and DEV=1
Difference between DEV=0 and DEV=1 is following,
DEV=0 DEV=1
Maximum value range -189.2ppm to 189.2ppm -62ppm to 63ppm
Minimum resolution 3ppm 1ppm
Notes:
If following 3 conditions are completed, actual clock adjustment value could be different from target
adjustment value that set by oscillator adjustment function.
1. Using oscillator adjustment function
2. Access to R2061x at random, or synchronized with external clock that has no relation to R2061x, or
synchronized with periodic interrupt in pulse mode.
3. Access to R2061x more than 2 times per each second on average.
For more details, please contact to Ricoh.
How to evaluate the clock gain or loss
The oscillator adjustment circuit is configured to change time counts of 1 second on the basis of the settings of
the oscillation adjustment register once in 20 seconds or 60 seconds. The way to measure the clock error as
follows:
(1) Output a 1Hz clock pulse of Pulse Mode with interrupt pin
Set (0,0,x,x,0,0,1,1) to Control Register 1 at address Eh.
(2) After setting the oscillation adjustment register, 1Hz clock period changes every 20seconds ( or every 60
seconds) like next page figure.
1Hz clock pulse
T0 T0 T0 T1
1 time 19 times or 59 times
Measure the interval of T0 and T1 with frequency counter. A frequency counter with 7 or more digits is
recommended for the measurement.
(3) Calculate the typical period from T0 and T1
When DEV=0:
T = (19T0+1T1)/20
When DEV=1:
T = (59T0+1T1)/60
Calculate the time error from T.
Er RICOH
R2061x
NO.EA-112-160701
39
* R2061K (FFP12) is the discontinued product as of July, 2016.
Power-on Reset, Oscillation Halt Sensing, and Supply Voltage
Monitoring
PON, XS
T
, and VDET
The power-on reset circuit is configured to reset control register1, 2, and clock adjustment register when VDD
power up from 0v. The oscillation halt sensing circuit is configured to record a halt on oscillation by 32.768-kHz
clock pulses. The supply voltage monitoring circuit is configured to record a drop in supply voltage below a
threshold voltage of 2.1 or 1.35v.
Each function has a monitor bit. I.e. the PON bit is for the power-on reset circuit, and XS
T
bit is for the oscillation
halt sensing circuit, and VDET is for the supply voltage monitoring circuit. PON and VDET bits are activated to
“H”. However, XS
T
bit is activated to “L”. The PON and VDET accept only the writing of 0, but XS
T
accepts
the writing of 0 and 1. The PON bit is set to 1, when VDD power-up from 0V, but VDET is set to 0, and XST is
indefinite.
The functions of these three monitor bits are shown in the table below.
PON
X
S
T
VDET
Function Monitoring for the power-
on reset function Monitoring for the
oscillation halt sensing
function
a drop in supply voltage
below a threshold
voltage of 2.1 or 1.35v
Address D4 in Address Fh D5 in Address Fh D6 in Address Fh
Activated High Low High
When VDD power
up from 0v 1 indefinite 0
accept the writing 0 only Both 0 and 1 0 only
The relationship between the PON, XST , and VDET is shown in the table below.
PON XST VDET Conditions of supply voltage
and oscillation Condition of oscillator, and back-
up status
0 0 0 Halt on oscillation, but no drop in
VDD supply voltage below
threshold voltage
Halt on oscillation cause of
condensation etc.
0 0 1 Halt on oscillation and drop in VDD
supply voltage below threshold
voltage, but no drop to 0V
Halt on oscillation cause of drop in
back-up battery voltage
0 1 0 No drop in VDD supply voltage
below threshold voltage and no
halt in oscillation
Normal condition
0 1 1 Drop in VDD supply voltage below
threshold voltage and no halt on
oscillation
No halt on oscillation, but drop in
back-up battery voltage
1 0 * Drop in supply voltage to 0v Power-up from 0v,
1 1 * Instantaneous power-down Time data is unreliable.
RICOH
R2061x
NO.EA-112-160701
40
* R2061K (FFP12) is the discontinued product as of July, 2016.
32768Hz Oscillation
Power-on reset flag
(PON)
Oscillation halt
sensin
g
fla
g
(
XST
)
Threshold voltage (2.1V or 1.35V)
VDD
VDD supply voltage
monitor flag (VDET)
Internal initialization
period (1 to 2 sec.)
VDET0
XST 1
PON0
VDET0
XST 1
PON1
VDET0
XST 1
PON0
Internal initialization
period (1 to 2 sec.)
When the PON bit is set to 1 in the control register 2, the DEV, F6 to F0, WALE, DALE, 1
2
/24, SCRATCH2,
TEST, CT2, CT1, CT0, VDSL, VDET, SCRATCH1, CTFG, WAFG, and DAFG bits are reset to 0 in the oscillation
adjustment register, the control register 1, and the control register 2. The PON bit is also set to 1 at power-on
from 0 volts.
< Considerations in Using Oscillation Halt Sensing Circuit >
Be sure to prevent the oscillation halt sensing circuit from malfunctioning by preventing the following:
1) Instantaneous power-down on the VDD
2) Condensation on the quartz crystal unit
3) On-board noise to the quartz crystal unit
4) Applying to individual pins voltage exceeding their respective maximum ratings
In particular, note that the XS
T
bit may fail to be set to 0 in the presence of any applied supply voltage as
illustrated below in such events as backup battery installation. Further, give special considerations to prevent
excessive chattering in the oscillation halt sensing circuit.
VDD
VDCC VDCC y: 1 P H‘ (1 to 255s) RICOH
R2061x
NO.EA-112-160701
41
* R2061K (FFP12) is the discontinued product as of July, 2016.
Voltage Monitoring Circuit
R2061x incorporates two kinds of voltage monitoring function. These are shown in the table below.
VCC Voltage Monitoring
Circuit VDD Voltage Monitoring
Circuit (VDET)
Purpose CPU reset output Back-up battery checker
Monitoring supply voltage VCC pin VDD pin (supply voltage for the
internal RTC circuit)
Output for result VDC
C
pin Store in the Control Register 2
(D6 in Address Fh)
Function After falling VCC, VDCC outputs
“L”. tDEALY after rising VCC,
VDC
C
outputs “H” (OFF)
Below the threshold voltage, SW1
turns off and SW2 turns on.
Over the threshold voltage, SW1
turns on and SW2 turns off.
Detector Threshold (falling
edge of power supply voltage) -VDET1 Selecting from VDETH or VDETL by
writing to the register
(D7 in Address Fh)
Detector Released
Voltage (rising edge of power
supply voltage)
+VDET1 Same as falling edge
( No hysteresis)
The way to monitor Always One time every second
The VDD supply voltage monitoring circuit is configured to conduct a sampling operation during an interval of
7.8ms per second to check for a drop in supply voltage below a threshold voltage of 2.1 or 1.35v for the VDSL bit
setting of 0 (the default setting) or 1, respectively, in the Control Register 2, thus minimizing supply current
requirements as illustrated in the timing chart below. This circuit suspends a sampling operation once the VDET
bit is set to 1 in the Control Register 2. The VDD supply voltage monitor is useful for back-up battery checking.
VDET
(
D6 in Address Fh
)
PON
VDD 2.1v or 1.35v
1s
VDET0
7.8ms
Sampling timing for VDD
supply voltage monitor
Internal
initialization
period
(
1 to 2sec.
)
PON0
VDET0
<Precautions for Using Voltage Monitoring Circuit>
After writing to the second counter, reset a VDET flag (writing 0) once for defining a value of VDET flag.
Oscilla -Vn VDEn (DELAV RICOH
R2061x
NO.EA-112-160701
42
* R2061K (FFP12) is the discontinued product as of July, 2016.
The VCC supply voltage monitor circuit operates always. When VCC rising over +VDET1, SW1 turns on, and SW2
turns off. And tDELAY after rising VCC, VDC
C
outputs OFF(H). But when oscillation is halt, VCC outputs
OFF(H) tDELAY after oscillation starting. When VCC falling beyond -VDET1, SW1 turns off, and SW2 turns on. And
VDCC outputs “L”.
VDD
32768Hz Oscillation
VDCC
+VDET1
VCC
SW1
SW2
tDELAY tDELAY tDELAY
ON ON ON
ON ON
Same voltage level as VSB
Oscillation starting -VDET1
RICOH
R2061x
NO.EA-112-160701
43
* R2061K (FFP12) is the discontinued product as of July, 2016.
Battery Switch over Circuit
R2061x incorporates three power supply pins, VDD, VCC, and VSB. VDD pin is the power supply pin for internal
real time clock circuit. When VCC voltage is lower than VDET1, VSB supplies the power to VDD, and when
higher than VDET1, VCC supplies the power to VDD. The timing chart for VCC, VDD, and VSB is shown following.
VDD
+VDET1
VCC
VSB
(1) (2) (3) (3)(2)
-VDET1
(1) When VSB is 0v and VCC is rising from 0v, VDD follows half of VCC voltage level. After VCC rising over
+V
DET1, VDD follows VCC voltage level.
(2) When VCC is higher than +VDET1, VDD level is equal to VCC.
(3) After VCC falling beyond –VDET1, VDD level is equal to VSB.
<Instructions on VSB power-on operation>
To initialize the internal circuit, supply power (+VDET1 or more) to the VCC pin while the VSB pin is connected to
the power source (Battery). If this initialization is not performed, leakage current may flow into the VSB pin.
INTR INTR INTR INTR RICOH
R2061x
NO.EA-112-160701
44
* R2061K (FFP12) is the discontinued product as of July, 2016.
Alarm and Periodic Interrupt
The R2061x incorporates the alarm interrupt circuit and the periodic interrupt circuit that are configured to
generate alarm signals and periodic interrupt signals for output from the INTR pin as described below.
(1) Alarm Interrupt Circuit
The alarm interrupt circuit is configured to generate alarm signals for output from the INT
R
, which is driven low
(enabled) upon the occurrence of a match between current time read by the time counters (the day-of-week, hour,
and minute counters) and alarm time preset by the alarm registers (the Alarm_W registers intended for the day-
of-week, hour, and minute digit settings and the Alarm_D registers intended for the hour and minute digit settings).
(2) Periodic Interrupt Circuit
The periodic interrupt circuit is configured to generate either clock pulses in the pulse mode or interrupt signals
in the level mode for output from the INTR pin depending on the CT2, CT1, and CT0 bit settings in the control
register 1.
The above two types of interrupt signals are monitored by the flag bits (i.e. the WAFG, DAFG, and CTFG bits in
the Control Register 2) and enabled or disabled by the enable bits (i.e. the WALE, DALE, CT2, CT1, and CT0
bits in the Control Register 1) as listed in the table below.
Flag bits Enable bits
Alarm_W WAFG
(D1 at Address Fh) WALE
(D7 at Address Eh)
Alarm_D DAFG
(D0 at Address Fh) DALE
(D6 at Address Eh)
Peridic interrupt CTFG
(D2 at Address Fh) CT2=CT1=CT0=0
(These bit setting of “0” disable the Periodic Interrupt)
(D2 to D0 at Address Eh)
* At power-on, when the WALE, DALE, CT2, CT1, and CT0 bits are set to 0 in the Control Register 1,
the INT
R
pin is driven high (disabled).
* When two types of interrupt signals are output simultaneously from the INT
R
pin, the output from the
INT
R
pin becomes an OR waveform of their negative logic.
Example: Combined Output to INTR Pin Under Control of
Alarm_D and Periodic Interrupt
Periodic Interrupt
INTR
Alarm_D
In this event, which type of interrupt signal is output from the INTR pin can be confirmed by reading the
DAFG, and CTFG bit settings in the Control Register 2.
RICOH
R2061x
NO.EA-112-160701
45
* R2061K (FFP12) is the discontinued product as of July, 2016.
Alarm Interrupt
The alarm interrupt circuit is controlled by the enable bits (i.e. the WALE and DALE bits in the Control Register
1) and the flag bits (i.e. the WAFG and DAFG bits in the Control Register 2). The enable bits can be used to
enable this circuit when set to 1 and to disable it when set to 0. When intended for reading, the flag bits can be
used to monitor alarm interrupt signals. When intended for writing, the flag bits will cause no event when set to
1 and will drive high (disable) the alarm interrupt circuit when set to 0.
The enable bits will not be affected even when the flag bits are set to 0. In this event, therefore, the alarm
interrupt circuit will continue to function until it is driven low (enabled) upon the next occurrence of a match
between current time and preset alarm time.
The alarm function can be set by presetting desired alarm time in the alarm registers (the Alarm_W Registers for
the day-of-week digit settings and both the Alarm_W Registers and the Alarm_D Registers for the hour and
minute digit settings) with the WALE and DALE bits once set to 0 and then to 1 in the Control Register 1. Note
that the WALE and DALE bits should be once set to 0 in order to disable the alarm interrupt circuit upon the
coincidental occurrence of a match between current time and preset alarm time in the process of setting the alarm
function.
current time =
preset alarm time
WALE1
(DALE)
Interval (1min.) during which a match
between current time and preset alarm time
occurs
current time =
preset alarm time WAFG
0
(DAFG)
INTR
WALE
1
(DALE)
WALE1
(DALE) current time =
preset alarm time WALE0
(DALE) current time =
preset alarm time
INTR
After setting WALE(DALW) to 0, Alarm registers is set to current time, and WALE(DALE) is set to 1, INTR will
be not driven to “L” immediately, INTR will be driven to “L” at next alarm setting time.
RICOH
R2061x
NO.EA-112-160701
46
* R2061K (FFP12) is the discontinued product as of July, 2016.
Periodic Interrupt
Setting of the periodic selection bits (CT2 to CT0) enables periodic interrupt to the CPU. There are two waveform
modes: pulse mode and level mode. In the pulse mode, the output has a waveform duty cycle of around 50%.
In the level mode, the output is cyclically driven low and, when the CTFG bit is set to 0, the output is return to
High (OFF).
CT2 CT1 CT0 Description
Wave form
mode Interrupt Cycle and Falling Timing
0 0 0 - OFF(H) (Default)
0 0 1 - Fixed at “L”
0 1 0 Pulse Mode *1) 2Hz(Duty50%)
0 1 1 Pulse Mode *1) 1Hz(Duty50%)
1 0 0 Level Mode *2) Once per 1 second (Synchronized with
Second counter increment)
1 0 1 Level Mode *2) Once per 1 minute (at 00 seconds of every
Minute)
1 1 0 Level Mode *2) Once per hour (at 00 minutes and 00
Seconds of every hour)
1 1 1 Level Mode *2) Once per month (at 00 hours, 00 minutes,
and 00 seconds of first day of every month)
*1) Pulse Mode:
2-Hz and 1-Hz clock pulses are output in synchronization with the increment of the second counter as
illustrated in the timing chart below.
INTR Pin
Rewriting of the second counter
CTFG Bit
A
pprox. 92s
(Increment of second counter)
In the pulse mode, the increment of the second counter is delayed by approximately 92 s from the falling
edge of clock pulses. Consequently, time readings immediately after the falling edge of clock pulses may
appear to lag behind the time counts of the real-time clocks by approximately 1 second. Rewriting the
second counter will reset the other time counters of less than 1 second, driving the INTR pin low.
*2) Level Mode:
Periodic interrupt signals are output with selectable interrupt cycle settings of 1 second, 1 minute, 1 hour,
and 1 month. The increment of the second counter is synchronized with the falling edge of periodic
interrupt signals. For example, periodic interrupt signals with an interrupt cycle setting of 1 second are
output in synchronization with the increment of the second counter as illustrated in the timing chart below.
RICOH
R2061x
NO.EA-112-160701
47
* R2061K (FFP12) is the discontinued product as of July, 2016.
INTR Pin
(Increment of
second counter)
CTFG Bit
Setting CTFG bit to 0 Setting CTFG bit to 0
(Increment of
second counter) (Increment of
second counter)
*1), *2) When the oscillation adjustment circuit is used, the interrupt cycle will fluctuate once per 20sec. as
follows:
Pulse Mode: The “L” period of output pulses will increment or decrement by a maximum of 3.784ms. For
example, 1-Hz clock pulses will have a duty cycle of 50 0.3784%.
Level Mode: A periodic interrupt cycle of 1 second will increment or decrement by a maximum of 3.784ms.
i RICOH
R2061x
NO.EA-112-160701
48
* R2061K (FFP12) is the discontinued product as of July, 2016.
Typical Applications
Typical Power Circuit Configurations
VDD
VSB
VCC
VSS
0.1F
CPU Power
Supply
The case of back-up b
y
primary battery
CR2025
etc.
VSB
VDD
VCC
VSS
0.1F
CPU power
supply
ML614
etc.
The case of back-up by
capacitor or secondary battery
(Charging voltage is equal to CPU
power supply voltage)
VSB
VDD
VCC
VSS
0.1F
CPU power
supply
(3V)
5V
Double layer
capacitor
etc.
The case of back-up by
capacitor or secondary battery
(Charging voltage is not equal to
CPU power supply voltage)
VDD pin cannot be connected to any additional heavy load components such as SRAM. And VDD pin must be
connected C2, and C2 should be over 0.1F.
VDD
CPU power supply
VCC
VSB
C3
VOLTAGE
DETECTOR
SW1
SW2
C2 R1
CPU
Vbat
-VDET1 Rcpu
R2061 Series
When secondary battery or double layer capacitor connects to VDD pin, after CPU power supply turning off,
secondary battery discharges through the root above figure. If R1 is much smaller than CPU impedance (Rcpu),
VCC voltage keeps higher than -VDET1, and SW1 keeps on. Therefore R1 must be specified by following formula.
R1 > Rcpu x (Vbat - (-VDET1)) / (-VDET1)
R1 is specified by back-up battery or double layer capacitor, too. Please check the data sheet for back-up
devices.
INTR VDCC VDCC INTR RICOH
R2061x
NO.EA-112-160701
49
* R2061K (FFP12) is the discontinued product as of July, 2016.
Connection of CIN pin
Please connect capacitor over 0.1F between CIN and VSS pin.
Connection of INT
R
and VDC
C
Pin
The INTR and VDC
C
pins follow the N-channel open drain output logic and contains no protective diode on
the power supply side. As such, it can be connected to a pull-up resistor of up to 5.5 volts regardless of supply
voltage.
VSB
OSCIN
OSCOUT
INTR or VDCC *1)
32768Hz
B
A
Backup power supply
CPU power supply
VSS
*1) Depending on whether the INT
R
and
VDCC pins are to be used during battery
backup, it should be connected to a pull-
up resistor at the following different
positions:
(1) Position A in the left diagram when it is
not to be used during battery backup.
(2) Position B in the left diagram when it is to
be used during battery backup.
RICOH
R2061x
NO.EA-112-160701
50
* R2061K (FFP12) is the discontinued product as of July, 2016.
Typical Characteristics
Time keeping current (ISB) vs. Supply voltage (VSB)
(Topt=25C) Test Circuit
VCC
VSB
VDD
CIN
VSS
OSCIN
OSCOUT
INTR
VDCC
CE
SCLK
SIO
0.1F
0.1F
A
Stand-by current (ICC) vs. Supply voltage (VCC)
(Topt=25C) Test circuit
VCC
VSB
VDD
CIN
VSS
OSCIN
OSCOUT
CE
SCLK
SIO
0.1F
0.1F
AINTR
VDCC
Time keeping current (ISB) vs. Operating Temperature (Topt)
(VSB=3V) Test circuit
VCC
VSB
VDD
CIN
VSS
OSCIN
OSCOUT
CE
SCLK
SIO
0.1F
0.1F
A
INTR
VDCC
0
0.1
0.2
0.3
0.4
0.5
0123456
Time keeping current (uA)
VSB(v)
0
0.5
1
1.5
2
0123456
Stand-by Current (uA)
VCC(v)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
-50-250 255075100
Time keeping current (uA)
Operating Temperature (Celsius)
HUM VS VDD VS RICOH
R2061x
NO.EA-112-160701
51
* R2061K (FFP12) is the discontinued product as of July, 2016.
Stand-by current (ICC) vs. Operating Temperature (Topt)
(VCC=3V) Test circuit
VCC
VSB
VDD
CIN
VSS
OSCIN
OSCOUT
CE
SCLK
SIO
0.1F
0.1F
AINTR
VDCC
CPU access current vs. SCLK clock frequency (kHz)
(Topt=25C)
Oscillation frequency deviation (f/f0) vs. Operating temperature (Topt)
(VCC=3V Topt=25C as standard) Test circuit
VCC
VSB
VDD
CIN
VSS
OSCIN
OSCOUT
CE
SCLK
SIO
0.1F
0.1F
Frequency
counter INTR
VDCC
0
0.5
1
1.5
2
-50 -25 0 25 50 75 100
Stand-by current(uA)
Operating temperature (Celsius)
0
20
40
60
80
0 200 400 600 800 1000
CPU access current (uA)
SCL clock frequency (KHz)
-160
-140
-120
-100
-80
-60
-40
-20
0
20
-50 -25 0 25 50 75 100
Oscillation frequency deviation
df/f0(ppm)
Operating temperature Topt(Celsius)
VCC=5v
VCC=3v
HUM J OSC‘N VS VDD VS OSCI - VS VDDj -- 0' E1 vs T
R2061x
NO.EA-112-160701
52
* R2061K (FFP12) is the discontinued product as of July, 2016.
Frequency deviation (f/f0) vs. Supply voltage (VSB/VCC)
(Topt=25C) VCC/VSB=3V as standard Test circuit
0.1F
0.1F
Frequency
counter
VCC
VSB
VDD
CIN
VSS
OSCIN
OSCOUT
INTR
VDCC
CE
SCLK
SIO
Frequency deviation (f/f0) vs. CGOUT
(Topt=25C, VCC=3V)CGOUT=0pF as standard Test circuit
VCC
VSB
VDD
CIN
VSS
OSCIN
OSCOUT
CE
SCLK
SIO
0.1F
0.1F
Frequency
counter INTR
VDCC
Detector threshold voltage (+VDET1/-VDET1) vs. Operating temperature (Topt) (R2061K01,
R2061L01)
(VSB=3V) Test circuit
VCC
VSB
VDD
CIN
VSS
OSCIN
OSCOUT
CE
SCLK
SIO
0.1F
0.1F
INTR
VDCC
-4
-3
-2
-1
0
1
2
0123456
Frequency deviation df/f0(ppm)
VCC/VSB(v)
-40
-30
-20
-10
0
10
0 5 10 15 20
Frequency deviation df/f0(ppm)
CGOUT(pF)
1.6
1.7
1.8
1.9
-50-250 255075100
Detector threshold voltage
±VDET1(V)
Operating Temperature Topt(Celsius)
+VDET1
-VDET1
N 1 \\ 7 TE 7 S 73‘ D “1—— ? S T __|_ |:| 7 T: D 73L 177 T VDCC W / RICOH
R2061x
NO.EA-112-160701
53
* R2061K (FFP12) is the discontinued product as of July, 2016.
VCC-VDD(VDDOUT1) vs. Output load current (IOUT1) (R2061K01,R2061L01)
(Topt=25C) Test circuit
VCC
VSB
VDD
CIN
VSS
OSCIN
OSCOUT
CE
SCLK
SIO
0.1F
0.1FA
INTR
VDCC
VSB-VDD(VDDOUT2) vs. Output load current (IOUT2) (R2061K01,R2061L01)
(Topt=25C) Test circuit
VCC
VSB
VDD
CIN
VSS
OSCIN
OSCOUT
CE
SCLK
SIO
0.1F
0.1FA
INTR
VDCC
VOL vs. IOL ( VDC
C
pin) VOL vs. IOL ( INT
R
pin)
(Topt=25C, VSB=VCC=1.5v) (Topt=25C)
-0.5
-0.4
-0.3
-0.2
-0.1
0
0246810
VCC-VDD(V)
Output load current IOUT1(mA)
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0
00.511.522.53
VSB-VDD(V)
Output load current IOUT2(mA)
0
0.1
0.2
0.3
0.4
012345
VOL(V)
IOL(mA)
0
0.1
0.2
0.3
0.4
0246810
VOL(v)
IOL(mA)
VCC=3V
VCC=5V
VSB=3V
VSB=2V
VSB=1V
VCC=5V
VCC=3V
VCC=2.5V
VCC=2.0V
FON: 7 RICOH
R2061x
NO.EA-112-160701
54
* R2061K (FFP12) is the discontinued product as of July, 2016.
Typical Software-based Operations
Initialization at Power-on
Start
*1)
Yes
No
VDET=0?
Warning Back-up
Batter
y
Run-down
Set Oscillation Adjustment
Register and Control
Register 1 and 2, etc.
Power-on
*2)
*4) *3)
PON=1?
Yes
No
*1) After power-on from 0 volt, the process of internal initialization require a time span on 1sec, so that
access should be done after VDCC turning to OFF(H).
*2) The PON bit setting of 0 in the Control Register 1 indicates power-on from backup battery and not from
0v. For further details, see "P.39 Power-on Reset, Oscillation Halt Sensing, and Supply Voltage
Monitoring PON, XST , and VDET ".
*3) This step is not required when the supply voltage monitoring circuit is not used.
When using this circuit, note as follows.
After writing to the second counter, reset a VDET flag (writing 0) once for defining a value of VDET flag.
*4) This step involves ordinary initialization including the Oscillation Adjustment Register and interrupt cycle
settings, etc.
Writing of Time and Calendar Data
Write to Time Counter and
Calendar Counter
*2)
CEL
CEH
*1)
*1) When writing to clock and calendar counters, do not insert CE=L
until all times from second to year have been written to prevent
error in writing time. (Detailed in "P.31 Considerations in
Reading and Writing Time Data under special condition".
*2) Any writing to the second counter will reset divider units lower
than the second digits.
After writing to the second counter, reset a VDET flag (writing 0)
once for defining a value of VDET flag.
The R2061x may also be initialized not at power-on but in the
process of writing time and calendar data.
CTFG=17 end RICOH
R2061x
NO.EA-112-160701
55
* R2061K (FFP12) is the discontinued product as of July, 2016.
Reading Time and Calendar Data
(1) Ordinary Process of Reading Time and Calendar Data
Read from Time Counter
and Calendar Counter
*1)
CEL
CEH *1)
(2) Basic Process of Reading Time and Calendar Data with Periodic Interrupt Function
*2)
Other Interrupt
Processes
Set Periodic Interrupt
Cycle Selection Bits
CTFG=1?
Read from Time Counter
and Calendar Counte
r
Yes
No
Control Register 2
(X1X1X011)
Generate Interrupt in CPU
*1)
*3)
*1) This step is intended to select the level mode
as a waveform mode for the periodic interrupt
function.
*2) This step must be completed within 0.5
second.
*3) This step is intended to set the CTFG bit to 0
in the Control Register 2 to cancel an interrupt
to the CPU.
*1) When reading to clock and calendar counters, do not insert
CE=L until all times from second to year have been read to
prevent error in reading time. (Detailed in "P.31
Considerations in Reading and Writing Time Data under
special condition".
RICOH
R2061x
NO.EA-112-160701
56
* R2061K (FFP12) is the discontinued product as of July, 2016.
(3) Applied Process of Reading Time and Calendar Data with Periodic Interrupt Function
Time data need not be read from all the time counters when used for such ordinary purposes as time count
indication. This applied process can be used to read time and calendar data with substantial reductions in the
load involved in such reading.
For Time Indication in "Day-of-Month, Day-of-week, Hour, Minute, and Second" Format:
*2)
Other interrupts
Processes
Control Register 1
(XXXX0100)
Control Register 2
(X1X1X011)
Sec.=00?
Yes
No
Use Previous Min.,Hr.,
Day,and Day-of-week data
Generate interrupt to CPU
*1)
*3)
CTFG=1?
Control Register 2
(X1X1X011)
Yes
Read Min.,Hr.,Day,
and Day-of-week
*4)
No
*1) This step is intended to select the
level mode as a waveform mode for
the periodic interrupt function.
*2) This step must be completed within
0.5 sec.
*3) This step is intended to read time
data from all the time counters only
in the first session of reading time
data after writing time data.
*4) This step is intended to set the
CTFG bit to 0 in the Control Register
2 to cancel an interrupt to the CPU.
E CTFG:1 .7 : RICOH
R2061x
NO.EA-112-160701
57
* R2061K (FFP12) is the discontinued product as of July, 2016.
Interrupt Process
(1) Periodic Interrupt
*2)
Other Interrupt
Processes
Set Periodic Interrupt
Cycle Selection Bits
CTFG=1?
Conduct
Periodic Interru
p
t
Yes
No
Control Register 2
(X1X1X011)
Generate Interrupt to CPU
*1)
*1) This step is intended to select the level mode
as a waveform mode for the periodic interrupt
function.
*2) This step is intended to set the CTFG bit to 0
in the Control Register 2 to cancel an interrupt
to the CPU.
‘ :;; ;G or DA FG: ;: RICOH
R2061x
NO.EA-112-160701
58
* R2061K (FFP12) is the discontinued product as of July, 2016.
(2) Alarm Interrupt
*3)
Other Interrupt
Processes
Set Alarm Min., Hr., and
Day-of-week Registers
WAFG or DAFG=1?
Conduct Alarm Interrupt
Yes
No
Control Register 2
(X1X1X101)
Generate Interrupt to CPU
*1)
WALE or DALE0
*2) WALE or DALE1
*1) This step is intended to once disable the alarm
interrupt circuit by setting the WALE or DALE bits
to 0 in anticipation of the coincidental occurrence
of a match between current time and preset alarm
time in the process of setting the alarm interrupt
function.
*2) This step is intended to enable the alarm interrupt
function after completion of all alarm interrupt
settings.
*3) This step is intended to once cancel the alarm
interrupt function by writing the settings of "X,1,X,
1,X,1,0,1" and "X,1,X,1,X,1,1,0" to the Alarm_W
Registers and the Alarm_D Registers,
respectively.
@ ROHS Comp‘ cm RICOH RICOH ELECTRONIC DEVICES co., LTD.
Ricoh is committed to reducing the environmental loading materials in electrical devices
with a view to contributing to the protection of human health and the environment.
Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since
April 1, 2012.
Halogen Free
https://www.e-devices.ricoh.co.jp/en/
Sales & Support Offices
Ricoh Electronic Devices Co., Ltd.
Shin-Yokohama Office (International Sales)
2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan
Phone: +81-50-3814-7687 Fax: +81-45-474-0074
Ricoh Americas Holdings, Inc.
675 Campbell Technology Parkway, Suite 200 Campbell, CA 95008, U.S.A.
Phone: +1-408-610-3105
Ricoh Europe (Netherlands) B.V.
Semiconductor Support Centre
Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands
Phone: +31-20-5474-309
Ricoh International B.V. - German Branch
Semiconductor Sales and Support Centre
Oberrather Strasse 6, 40472 Düsseldorf, Germany
Phone: +49-211-6546-0
Ricoh Electronic Devices Korea Co., Ltd.
3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea
Phone: +82-2-2135-5700 Fax: +82-2-2051-5713
Ricoh Electronic Devices Shanghai Co., Ltd.
Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203,
People's Republic of China
Phone: +86-21-5027-3200 Fax: +86-21-5027-3299
Ricoh Electronic Devices Shanghai Co., Ltd.
Shenzhen Branch
1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District,
Shenzhen, China
Phone: +86-755-8348-7600 Ext 225
Ricoh Electronic Devices Co., Ltd.
Taipei office
Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623
1. The products and the product specifications described in this document are subject to change or discontinuation of
production without notice for reasons
such as improvement. Therefore, before deciding to use the products, please
refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written
consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise
taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits
for the products. The release of such information is not to be construed as a warranty of or a grant of license under
Ricoh's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard
applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products,
amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality
and reliability, for example, in a highly specific application where the failure or misoperation of the product could result
in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and
transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products
are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from
such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy
feature, fire containment feature and fail-safe feature. We do not assume any liability
or responsibility for any loss or
damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and
characteristics in the evaluation stage.
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and
characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the
case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting
to use AOI.
11.
Please contact Ricoh sales representatives should you have any questions or comments concerning the products or
the technical information.