Fiche technique pour MIC862 de Microchip Technology

‘ Mlcgcmp M|C862 I‘ll—INN W N |_||_||_||_|
2017 Microchip Technology Inc. DS20005836A-page 1
MIC862
Features
8-Pin SOT-23 Package
3 MHz Gain-Bandwidth Product
5 MHz, –3 dB Bandwidth
31 µA Supply Current
Rail-to-Rail Output
Ground Sensing at Input
(Common-Mode-to-GND)
Drives Large Capacitive Loads
Unity Gain Stable
Applications
Portable Equipment
Medical Instruments
•PDAs
• Pagers
Cordless Phones
Consumer Electronics
General Description
The MIC862 is a dual low-power operational amplifier
in an SOT23-8 package. It is designed to operate in the
2V to 5V range, rail-to-rail output, with input
common-mode to ground. The MIC862 provides
3 MHz gain-bandwidth product while consuming only
31 µA supply current per channel.
With low supply voltage and 8-lead SOT-23 packaging,
MIC862 provides two channels as general-purpose
amplifiers for portable and battery-powered
applications. Its package provides the maximum
performance available while maintaining an extremely
slim form factor. The minimal power consumption of
this IC maximizes the battery life potential.
Package Type
MIC862
8-Pin SOT-23 (M8)
1OUTA
INA–
INA+
V–
8V+
OUTB
INB–
INB+
7
6
5
2
3
4
Dual Ultra-Low Power Op Amp in SOT-23-8
MIC862
DS20005836A-page 2 2017 Microchip Technology Inc.
Typical Application Schematic

0.1μF10μF
100pF

1
/
2
MIC862
1
/
2
MIC862 V
OUT
V+
RF
PEAK DETECTOR CIRCUIT FOR AM RADIO
2017 Microchip Technology Inc. DS20005836A-page 3
MIC862
1.0 ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings †
Supply Voltage (VV+ to VV–).....................................................................................................................................+6.0V
Differential Input Voltage (VIN+ to VIN–) (Note 1)......................................................................................................+6.0V
Input Voltage (VIN+ to VIN–)...........................................................................................................VV+ + 0.3V, VV– – 0.3V
Output Short-Circuit Current Duration.................................................................................................................Indefinite
ESD Rating (Note 2) .................................................................................................................................. ESD Sensitive
Operating Ratings ‡
Supply Voltage (V+ to V-)........................................................................................................................ +2.0V to +5.25V
Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at those or any other conditions above those indicated
in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended
periods may affect device reliability.
‡ Notice: The device is not guaranteed to function outside the operating ratings.
Note 1: Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in
particular, input bias current is likely to increase).
2: Devices are ESD sensitive. Handling precautions are recommended. Human body model, 1.5 k in series
with 100 pF.
OS RL VOUT VPP RL VOUT VPP RL CL Av RL CL Av
MIC862
DS20005836A-page 4 2017 Microchip Technology Inc.
TABLE 1-1: ELECTRICAL CHARACTERISTICS
Electrical Characteristics: V+ = +2V, V– = 0V, VCM = V+/2; RL = 500 k to V+/2; –40°C TA +85°C unless
otherwise noted.
Parameters Symbol Min. Typ. Max. Units Conditions
Input Offset Voltage
VOS
–6 0.1 6 mV
–5 0.1 5 TA = +25°C
Differential Offset
Voltage —0.5 — mV
Input Offset Voltage
Temperature
Coefficient
—6 —µV/°C
Input Bias Current IB—10 — pA
Input Offset Current IOS —5 — pA
Input Voltage
Range (from V–) VCM 0.5 1 V CMRR > 50 dB
Common-Mode
Rejection Ratio CMRR 45 75 dB 0V < VCM < 1V
Power Supply
Rejection Ratio PSRR 50 78 dB Supply voltage change of 2V to
2.7V.
Large-Signal
Voltage Gain AVOL
66 74
dB
RL = 5 k, VOUT = 1.4 VPP
75 89 RL = 100 k, VOUT = 1.4 VPP
85 100 RL = 500 k, VOUT = 1.4 VPP
Maximum Output
Voltage Swing
VOUT
V+ – 80 mV V+ –
55 mV
V
RL = 5 k
V+ – 3 mV V+ –
1.4 mV —R
L = 500 k
Minimum Output
Voltage Swing
V– +
14 mV V– + 20 mV
V
RL = 5 k
V– +
0.85 mV V– + 3 mV RL = 500 k
Gain-Bandwidth
Product GBW 2.1 MHz RL = 20 k, CL = 2 pF, AV = 11
Phase Margin PM 57 ° RL = 20 k, CL = 2 pF, AV = 11
–3 dB Bandwidth BW 4.2 MHz RL = 1 M, CL = 2 pF, AV = 1
Slew Rate SR 2 V/µs RL = 1 M, CL = 2 pF, AV = 1,
Positive Slew Rate = 1.5 V/µs
Short-Circuit Output
Current ISC
1.8 2.6 mA Source
1.5 2.2 Sink
Supply Current (per
Op Amp) IS 27 43 µA No Load
Channel-to-
Channel Crosstalk –100 dB Note 1
Note 1: DC signal referenced to input. Refer to the Typical Performance Curves section’s AC performance graphs.
V VOUT PP V P VOUT P
2017 Microchip Technology Inc. DS20005836A-page 5
MIC862
TABLE 1-2: ELECTRICAL CHARACTERISTICS
Electrical Characteristics: V+ = +2.7V, V– = 0V, VCM = V+/2; RL = 500 k to V+/2; –40°C TA +85°C unless
otherwise noted.
Parameters Symbol Min. Typ. Max. Units Conditions
Input Offset Voltage
VOS
–6 0.1 6 mV
–5 0.1 5 TA = +25°C
Differential Offset
Voltage —0.5 — mV
Input Offset Voltage
Temperature
Coefficient
—6 —µV/°C
Input Bias Current IB—10 — pA
Input Offset Current IOS —5 — pA
Input Voltage
Range (from V–) VCM 1 1.8 V CMRR > 60 dB
Common-Mode
Rejection Ratio CMRR 65 83 dB 0V < VCM < 1.35V
Power Supply
Rejection Ratio PSRR 60 85 dB Supply voltage change of 2.7V to
3V
Large-Signal
Voltage Gain AVOL
65 77
dB
RL = 5 k, VOUT = 2 VPP
80 90 RL = 100 k, VOUT = 2 VPP
90 101 RL = 500 k, VOUT = 2 VPP
Gain-Bandwidth
Product GBW 2.3 MHz RL = 20 k, CL = 2 pF, AV = 11
Phase Margin PM 50 ° RL = 20 k, CL = 2 pF, AV = 11
–3 dB Bandwidth BW 4.2 MHz RL = 1 M, CL = 2 pF, AV = 1
Slew Rate SR 3 V/µs RL = 1 M, CL = 2 pF, AV = 1,
Positive Slew Rate = 1.5 V/µs
Short-Circuit Output
Current ISC
4.5 6.3 mA Source
4.5 6.2 Sink
Supply Current (per
Op Amp) IS 28 45 µA No Load
Channel-to-
Channel Crosstalk –120 dB Note 1
Note 1: DC signal referenced to input. Refer to the Typical Performance Curves section’s AC performance graphs.
MIC862
DS20005836A-page 6 2017 Microchip Technology Inc.
TABLE 1-3: ELECTRICAL CHARACTERISTICS
Electrical Characteristics: V+ = +5V, V– = 0V, VCM = V+/2; RL = 500 k to V+/2; –40°C TA +85°C unless
otherwise noted.
Parameters Symbol Min. Typ. Max. Units Conditions
Input Offset Voltage
VOS
–6 0.1 6 mV
–5 0.1 5 TA = +25°C
Differential Offset
Voltage —0.5 — mV
Input Offset Voltage
Temperature
Coefficient
—6 —µV/°C
Input Bias Current IB—10 — pA
Input Offset Current IOS —5 — pA
Input Voltage
Range (from V–) VCM 3.5 4.1 V CMRR > 60 dB
Common-Mode
Rejection Ratio CMRR 60 87 dB 0V < VCM < 3.5V
Power Supply
Rejection Ratio PSRR 60 92 dB Supply voltage change of
3V to 5V
Large-Signal
Voltage Range AVOL
65 73
dB
RL = 5 k, VOUT = 4.8 VPP
80 86 RL = 100 k, VOUT = 4.8 VPP
89 96 RL = 500 k, VOUT = 4.8 VPP
Maximum Output
Voltage Swing
VOUT
V+ – 50 mV V+ –
37 mV
V
RL = 5 k
V+ – 3 mV V+ –
1.3 mV —R
L = 500 k
Minimum Output
Voltage Swing
V– +
24 mV V– + 40 mV RL = 5 k
V– +
0.7 mV V– + 3 mV RL = 500 k
Gain-Bandwidth
Product GBW 3 MHz RL = 20 k, CL = 2 pF, AV = 11
Phase Margin PM 45 °
–3 dB Bandwidth BW 5 MHz RL = 1 M, CL = 2 pF, AV = 1
Slew Rate SR 4 V/µs RL = 1 M, CL = 2 pF, AV = 1,
Positive Slew Rate = 1.5 V/µs
Short-Circuit Output
Current ISC
17 23 mA Source
18 27 Sink
Supply Current (per
Op Amp) IS 31 47 µA No Load
Channel-to-
Channel Crosstalk –120 dB Note 1
Note 1: DC signal referenced to input. Refer to the Typical Performance Curves section’s AC performance graphs.
2017 Microchip Technology Inc. DS20005836A-page 7
MIC862
TEMPERATURE SPECIFICATIONS (Note 1)
Parameters Sym. Min. Typ. Max. Units Conditions
Temperature Ranges
Operating Temperature Range –40 +125 °C
Storage Temperature Range TS +150 °C —
Ambient Temperature Range TA–40 +85 °C —
Package Thermal Resistance
Thermal Resistance SOT-23-8 JA 100 °C/W Using 4-Layer PCB
JC 70 °C/W Using 4-Layer PCB
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable
junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the
maximum allowable power dissipation will cause the device operating junction temperature to exceed the
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.
40”!) ‘ 55°C N a: q a 2 1.; GE (1V) «m V v // a? P NNéU / 8; 0741 29 3 0 33222111 3.5 hzmmmno CDUKGNEOIm Sourcmg 2345578910 OUTPUT CURRENT (MA) I 0 2. 7. 7... 0004414229.. cc 3459 SaSo OUTPUT CURRENT 1111A) 4 4 4 322211 3.5 hzmmmao PEUEUFKOIW 7 2 Sourcmg , 7 ,1, 2221111000 3 W259 Sago -18 -24 ~30 ~12 OUTPUT CURRENT 1mA) m o 85°C 2365678910 OUTPUT CURRENT (mA) 1 48.7. 9.06.0 0.1, 00mm m1 V 3453 Sago
MIC862
DS20005836A-page 8 2017 Microchip Technology Inc.
2.0 TYPICAL PERFORMANCE CURVES
FIGURE 2-1: Short-Circuit Current vs.
Supply Voltage.
FIGURE 2-2: Output Voltage vs. Output
Current.
FIGURE 2-3: Output Voltage vs. Output
Current.
FIGURE 2-4: Short-Circuit Current vs.
Supply Voltage.
FIGURE 2-5: Output Voltage vs. Output
Current.
FIGURE 2-6: Output Voltage vs. Output
Current.
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
w SUPPLY CURRENT/CHWN A A N m w w u b N, . .N 0," DF___F—NN SUPPLY VOLTAGE (:V) m. N OFFSET VOLTAGE (mV) 2.— 254 N 4 ”(40°C - 5 >1 >05 0 05 1 COMMON-MODE VOLTAGE (V) ooooooo OFFSET VOLTAGE [mV) 4710 -2o 0 20 4o 60 so 100 TEMPERATURE [”C) SHORT-CIRCLN CURRENT (mA) m N Soulcin \\ Q 25 \\ V: = :2 5v \ T v+ = +1 35v 40-20 0 20 40 so (1)100 TEMPERATURE (=0) capo 1 ’ 25°C OFFSET VOLTAGE 1mV) b 740:0 41.354.154.05 0 0511.5 2 COMMONVMODE VOLTAGE (V) SHORT-CIRCUIT CURRENT (mA) m Mum \ Sinkmg \ v: : :2 5V | 5 5 . v; : n.35v v 4040 0 21] 40 93 $100 TEMPERATUREPC)
2017 Microchip Technology Inc. DS20005836A-page 9
MIC862
FIGURE 2-7: Supply Current vs. Supply
Voltage.
FIGURE 2-8: Offset Voltage vs.
Temperature.
FIGURE 2-9: Offset Voltage vs.
Common-Mode Voltage.
FIGURE 2-10: Offset Voltage vs.
Common-Mode Voltage.
FIGURE 2-11: Short-Circuit Current vs.
Temperature.
FIGURE 2-12: Short-Circuit Current. vs.
Temperature.
5 225 ..... .. . 130 4 ‘30 135 :1 135 2 a E a a a E 5 g 31 5 % E < z="" 5="" 7‘="" 5="" e="" 5="" 45="" g="" v="" +1="" 35v="" 90="" 90="" ~="" 5d,,="" _="" 135="" \="" 135="" rl="1MQ" ‘30="" 4*="" rl:1m.(2="" \="" 180="" 5="" 7225="" 75="" 225="" 100k="" 1m="" 10m="" 10k="" 100k="" 1m="" 10m="" frequencv(h1)="" frequencv(h1|="" 2="" 225="" 2="" ‘="" 25="" 20="" 180="" 2="" j="" 130="" 1="" 135="" 1="" 1="" 135="" 1="" d="" 1="" ‘="" 0="" e="" g="" 3="" 4="" e="" 3="" 5="" %="" e="" \="" 5="" a="" z="" \="" ,="" 4="" z="">< a="" 75="" \="" 5="" e="" 5="" \="" 45="" e="" ,10="" so="" .1="" \="" so="" ‘15="" 125="" .15="" 135="" 2="" 150="" 2="" rfsm="" 180="" '="" '2="" r,="2um" 225="" .2="" 22="" ,="" 0k="" 100k="" 1m="" 10m="" 5="" ink="" 100k="" 1m="" 10m="" frequency="" (hz)="" frequency="" 1h2)="" 150="" 180="" 1="" 135="" 1="" 135="" 1="" 1="" 5="" 5="" a="" r="" a="" g="" s="" m="" e="" w="" e="" '="" 5="" 2="" g="" -="" 5="" g="" g="" 4="" 90="" g="" g="" -1="" 90="" g="" -1="" 1135v="" 135="" -1="" 135="" ‘="" 25f="" 1am="" -="" 180="" '2="" rl="5kfl" '="" 225="" '2="" r‘="" :50="" '2="" '="" '="" 225="" 270="" -270="" ‘1x="" 10k="" 100k="" 1m="" 10m="" frequenchhi)="" wk="" 10k="" 100k="" 1m="" 10m="" frequency="" (hz)="">
MIC862
DS20005836A-page 10 2017 Microchip Technology Inc.
FIGURE 2-13: Gain Bandwidth and Phase
Margin.
FIGURE 2-14: Gain Frequency Response.
FIGURE 2-15: Unity Gain Frequency
Response.
FIGURE 2-16: Gain Bandwidth and Phase
Margin.
FIGURE 2-17: Gain Frequency Response.
FIGURE 2-18: Unity Gain Frequency
Response.
dNubUI a u GAIN (as) PHASE“) ,1 35 180 225 100k 1M 10M FREQUENCY (Hz) PSRR (dB) 1 10 100 1k 10kmok1M 10M FREQUENCY (Hz) Nmzn FSRR (as) -Nua 1 101001K 10k100k1M1DM FREQUENCYfHZ) CROSSTALK (dB) 5 {a mo FREQUENCY (kHz) Ioou
2017 Microchip Technology Inc. DS20005836A-page 11
MIC862
FIGURE 2-19: Gain Bandwidth and Phase
Margin.
FIGURE 2-20: PSRR vs. Frequency.
FIGURE 2-21: Small Signal Response.
FIGURE 2-22: PSRR vs. Frequency.
FIGURE 2-23: Channel-to-Channel
Crosstalk.
FIGURE 2-24: Small Signal Response.
TIME 500ns/div
TUPNI
vid/Vm05
TUPTUO
vid/Vm05
A
V
= 1
V± = ±1.35V
C
L
= 1.7pF
R
L
 0ȍ
TIME 500ns/div
TUPNI
vid/Vm05
TUPTUO
vid/Vm05
A
V
= 1
V± = ±2.5V
C
L
= 1.7pF
R
L
 0ȍ
MIC862
DS20005836A-page 12 2017 Microchip Technology Inc.
FIGURE 2-25: Small Signal Response.
FIGURE 2-26: Small Signal Response.
FIGURE 2-27: Small Signal Response.
FIGURE 2-28: Small Signal Response.
FIGURE 2-29: Small Signal Pulse
Response.
FIGURE 2-30: Large Signal Response.
TIME 1μs/div
TUPNI
vid/Vm05
TUPTUO
vid/Vm05
A
V
= 1
V± = ±1.35V
C
L
= 50pF
R
L
 ȍ
TIME 1μs/div
TUPNI
vid/Vm05
TUPTUO
vid/Vm05
A
V
= 1
V± = ±2.5V
C
L
= 50pF
R
L
= 500Ω
TIME 500ns/div
TUPNI
vid/Vm05
TUPTUO
vid/Vm05
A
V
= 1
V± = ±1.35V
C
L
= 1000pF
R
L
 ȍ
TIME 500ns/div
TUPNI
vid/Vm05
TUPTUO
vid/Vm05
A
V
= 1
V± = ±2.5V
C
L
= 1000pF
R
L
 ȍ
TIME 500ns/div
TUPTUO
vid/Vm05
TUPNI
vid/Vm05
A
V
= 1
V+ = +1.5V
V– = –0.5V
C
L
= 1.7pF
R
L
 0ȍ
TIME 5μs/div
AV = 1
V± = ±1.35V
CL = 1.7pF
RL = 1MΩ
TUPTUO
vid/Vm005
Positive Slew Rate = 1.5V/μs
Negative Slew Rate = 2.0V/μs
2017 Microchip Technology Inc. DS20005836A-page 13
MIC862
FIGURE 2-31: Large Signal Response.
FIGURE 2-32: Large Signal Response.
FIGURE 2-33: Large Signal Response.
FIGURE 2-34: Large Signal Pulse
Response.
FIGURE 2-35: Large Signal Pulse
Response.
FIGURE 2-36: Large Signal Pulse
Response.
TIME 5μs/div
AV = 1
V± = ±2.5V
CL = 1.7pF
RL = 1MΩ
TUPTUO
vid/V1
Positive Slew Rate = 1.8V/μs
Negative Slew Rate = 4.1V/μs
TIME 5μs/div
AV= 1
V± = ±1.35V
CL = 50pF
RL = 500Ω
TUPTUO
vid/Vm005
Positive Slew Rate = 1.5V/μs
Negative Slew Rate = 2.8V/μs
TIME 5μs/div
TUPTUO
vid/V1
AV = 1
V± = ±2.5V
CL = 50pF
RL = 500Ω
Positive Slew Rate = 1.8V/μs
Negative Slew Rate = 4.7V/μs
TIME 5μs/div
TUPTUO
vid/Vm005
AV = 1
V± = ±1.35V
CL = 1000pF
RL = 500Ω
Positive Slew Rate = 1.3V/μs
Negative Slew Rate = 3.6V/μs
TIME 5μs/div
TUPTUO
vid/V1
AV = 1
V± = ±2.5V
CL = 1000pF
RL = 500Ω
Positive Slew Rate = 1.3V/μs
Negative Slew Rate = 3.6V/μs
TIME 5μs/div
TUPTUO
vid/Vm02
A
V
= 1
V+ = +1.5V
V– = –0.5V
C
L
= 1.7pF
R
L
= 1MΩ
Positive Slew Rate = 1.17V/μs
Negative Slew Rate = 2.0V/μs
MIC862
DS20005836A-page 14 2017 Microchip Technology Inc.
FIGURE 2-37: Rail-to-Rail Operation.
FIGURE 2-38: Rail-to-Rail Operation.
FIGURE 2-39: Rail-to-Rail Operation.
FIGURE 2-40: Rail-to-Rail Operation.
TIME 250μs/div
TUPNI
vid/Vm005
TUPTUO
vid/V1
A
V
= 2
V± = ±1.35V
C
L
= 2pF
R
L
= 1MΩ
R
F
= 20kΩΔV = 2.7V
PP
TIME 250μs/div
TUPNI
vid/Vm005
TUPTUO
vid/V1
A
V
= 2
V± = ±2.5V
C
L
= 2pF
R
L
= 1MΩ
R
F
= 20kΩΔV = 5V
PP
TIME 250μs/div
TUPNI
vid/Vm005
TUPTUO
vid/V1
A
V
= 2
V± = ±1.35V
C
L
= 2 pF
R
L
= 5kΩ
R
F
= 20kΩΔV = 2.7V
PP
TIME 250μs/div
TUPNI
vid/V1
TUPTUO
vid/V2
A
V
= 2
V± = ±2.5V
C
L
= 2pF
R
L
= 5kΩ
R
F
= 20kΩΔV = 5V
PP
2017 Microchip Technology Inc. DS20005836A-page 15
MIC862
3.0 PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 3-1.
TABLE 3-1: PIN FUNCTION TABLE
Pin Number Symbol Description
1 OUTA Amplifier A Output.
2 INA– Amplifier A Inverting Input.
3 INA+ Amplifier A Non-Inverting Input
4 V– Negative Supply.
5 INB+ Amplifier B Non-Inverting Input.
6 INB– Amplifier B Inverting Input.
7 OUTB Amplifier B Output.
8 V+ Positive Supply.
MIC862
DS20005836A-page 16 2017 Microchip Technology Inc.
4.0 APPLICATION INFORMATION
4.1 Power Supply Bypassing
Regular supply bypassing techniques are
recommended. A 10 F capacitor in parallel with a
0.1 F capacitor on both the positive and negative
supplies are ideal. For best performance all bypassing
capacitors should be located as close to the op amp as
possible and all capacitors should be low ESL
(equivalent series inductance), ESR (equivalent series
resistance). Surface-mount ceramic capacitors are
ideal.
4.2 Supply and Loading Resistive
Considerations
The MIC862 is intended for single-supply applications
configured with a grounded load. It is not advisable to
operate the MIC862 under either of the following
conditions:
A grounded load and split supplies (±V)
A single supply where the load is terminated
above ground.
Under the above conditions, if the load is less than
20 k and the output swing is greater than 1V (peak),
there may be some instability when the output is
sinking current.
4.3 Capacitive Load
When driving a large capacitive load, a resistor of 500
is recommended to be connected between the op amp
output and the capacitive load to avoid oscillation.
ogx 0&4 NNN Pbrfree JEDEC designamr( )
2017 Microchip Technology Inc. DS20005836A-page 17
MIC862
5.0 PACKAGING INFORMATION
5.1 Package Marking Information
Example
8-Pin SOT-23*
XXX
NNN
A34
943
Legend: XX...X Product code or customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC® designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
, , Pin one index is identified by a dot, delta up, or delta down (triangle
mark).
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information. Package may or may not include
the corporate logo.
Underbar (_) and/or Overbar () symbol may not be to scale.
3
e
3
e
TITLE 8 LEAD SOT23 PA ,AGE OUT:IKE & RECOMMENDED LAND PATTERN DRAWING # SOTEEiHLD’PL’i Lead Frame Copper Alloy Lead Finlsh HM; wk arm A cum: m :‘fisamun mwz/ / UNIT MM Ma:te Tm vmmwm uwznsmus sum/N m w) swam mm. NUM MAX. A 7 7 us M man 7 «7 v3 AZ an MS ‘ w b uzz 7 m c m 7 m n m as: E m ms. g 150 5: e m 33/: a ma ssc. L am 0,05 m u n so as: u us 5ch w u m 7 7 m o w 7 m: 9 n' 4- a m 5- w ‘5- umz . ‘ mm: arm: un7‘7a m Dflfli' 2 59 095 Dflfli' ow maumnm um Pan-nu
MIC862
DS20005836A-page 18 2017 Microchip Technology Inc.
8-Lead SOT-23 Package Outline and Recommended Land Pattern
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging.
2017 Microchip Technology Inc. DS20005836A-page 19
MIC862
APPENDIX A: REVISION HISTORY
Revision A (August 2017)
Converted Micrel document MIC862 to Microchip
data sheet template DS20005836A.
Minor text changes throughout.
Corrected the Product Identification System sec-
tion by removing an errorneous letter T from the
part number.
MIC862
DS20005836A-page 20 2017 Microchip Technology Inc.
NOTES:
PART NO.
2017 Microchip Technology Inc. DS20005836A-page 21
MIC862
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.
Examples:
a) MIC862YM8-TR: Dual Ultra-Low Power Op
Amp, –40°C to +85°C
Junction Temperature
Range, 8-Lead SOT-23
Package, 3,000/Reel
PART NO. XX
Package
Device
Device: MIC862: Dual Ultra-Low Power Op Amp
Temperature: Y = –40°C to +85°C
Package: M8 = 8-Lead SOT-23
Media Type: TR = 3,000/Reel
X
Temperature
-XX
Media Type
Note 1: Tape and Reel identifier only appears in the
catalog part number description. This identifier is
used for ordering purposes and is not printed on
the device package. Check with your Microchip
Sales Office for package availability with the
Tape and Reel option.
MIC862
DS20005836A-page 22 2017 Microchip Technology Inc.
NOTES:
YSTEM
2017 Microchip Technology Inc. DS20005836A-page 23
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
Trademarks
The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.
ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,
CodeGuard, CryptoAuthentication, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology
Inc., in other countries.
All other trademarks mentioned herein are property of their
respective companies.
© 2017, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-2084-2
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
QUALITYMANAGEMENTS
YSTEM
CERTIFIEDBYDNV
== ISO/TS16949==
6‘ ‘MICRDCHIP
DS20005836A-page 24 2017 Microchip Technology Inc.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078
ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-3326-8000
Fax: 86-21-3326-8021
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
France - Saint Cloud
Tel: 33-1-30-60-70-00
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820
Worldwide Sales and Service
11/07/16