l TEXAS
INSTRUMENTS
10
SN74HCS10-Q1
SCLS764A –AUGUST 2019–REVISED SEPTEMBER 2019
www.ti.com
Product Folder Links: SN74HCS10-Q1
Submit Documentation Feedback Copyright © 2019, Texas Instruments Incorporated
Typical Application (continued)
The SN74HCS10-Q1 can drive a load with a total capacitance less than or equal to 50 pF connected to a high-
impedance CMOS input while still meeting all of the datasheet specifications. Larger capacitive loads can be
applied, however it is not recommended to exceed 70 pF.
Total power consumption can be calculated using the information provided in CMOS Power Consumption and
Cpd Calculation.
Thermal increase can be calculated using the information provided in Thermal Characteristics of Standard Linear
and Logic (SLL) Packages and Devices.
CAUTION
The maximum junction temperature, TJ(max) listed in the Absolute Maximum Ratings,
is an additional limitation to prevent damage to the device. Do not violate any values
listed in the Absolute Maximum Ratings. These limits are provided to prevent damage
to the device.
9.2.1.2 Input Considerations
Input signals must cross Vt-(min) to be considered a logic LOW, and Vt+(max) to be considered a logic HIGH. Do
not exceed the maximum input voltage range found in the Absolute Maximum Ratings.
Unused inputs must be terminated to either VCC or ground. These can be directly terminated if the input is
completely unused, or they can be connected with a pull-up or pull-down resistor if the input is to be used
sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used
for a default state of LOW. The resistor size is limited by drive current of the controller, leakage current into the
SN74HCS10-Q1, as specified in the Electrical Characteristics, and the desired input transition rate. A 10-kΩ
resistor value is often used due to these factors.
The SN74HCS10-Q1 has no input signal transition rate requirements because it has Schmitt-trigger inputs.
Another benefit to having Schmitt-trigger inputs is the ability to reject noise. Noise with a large enough amplitude
can still cause issues. To know how much noise is too much, please refer to the ΔVT(min) in the Electrical
Characteristics. This hysteresis value will provide the peak-to-peak limit.
Unlike what happens with standard CMOS inputs, Schmitt-trigger inputs can be held at any valid value without
causing huge increases in power consumption. The typical additional current caused by holding an input at a
value other than VCC or ground is plotted in the Typical Characteristics.
Refer to the Feature Description for additional information regarding the inputs for this device.
9.2.1.3 Output Considerations
The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will
decrease the output voltage as specified by the VOH specification in the Electrical Characteristics. Similarly, the
ground voltage is used to produce the output LOW voltage. Sinking current into the output will increase the
output voltage as specified by the VOL specification in the Electrical Characteristics. The plots in and provide a
typical relationship between output voltage and current for this device.
Unused outputs can be left floating.
Refer to Feature Description for additional information regarding the outputs for this device.
9.2.2 Detailed Design Procedure
1. Add a decoupling capacitor from VCC to GND. The capacitor needs to be placed physically close to the
device and electrically close to both the VCC and GND pins. An example layout is shown in the Layout.
2. Ensure the capacitive load at the output is ≤70 pF. This is not a hard limit, however it will ensure optimal
performance. This can be accomplished by providing short, appropriately sized traces from the SN74HCS10-
Q1 to the receiving device.
3. Ensure the resistive load at the output is larger than (VCC / 25 mA) Ω. This will ensure that the maximum
output current from the Absolute Maximum Ratings is not violated. Most CMOS inputs have a resistive load